ÒÑÖª¼¯ºÏA={a1£¬a2£¬¡­£¬ak£¨k¡Ý2£©}£¬ÆäÖÐai¡ÊZ£¨i=1£¬2£¬¡­£¬k£©£¬ÓÉAÖеÄÔªËع¹³ÉÁ½¸öÏàÓ¦µÄ¼¯ºÏ£ºS={£¨a£¬b£©|a¡ÊA£¬b¡ÊA£¬a+b¡ÊA}£¬T={£¨a£¬b£©|a¡ÊA£¬b¡ÊA£¬a-b¡ÊA}£®ÆäÖУ¨a£¬b£©ÊÇÓÐÐòÊý¶Ô£¬¼¯ºÏSºÍTÖеÄÔªËظöÊý·Ö±ðΪmºÍn£®Èô¶ÔÓÚÈÎÒâµÄa¡ÊA£¬×ÜÓÐ-a∉A£¬Ôò³Æ¼¯ºÏA¾ßÓÐÐÔÖÊP£®
£¨I£©¼ìÑ鼯ºÏ{0£¬1£¬2£¬3}Óë{-1£¬2£¬3}ÊÇ·ñ¾ßÓÐÐÔÖÊP²¢¶ÔÆäÖоßÓÐÐÔÖÊPµÄ¼¯ºÏ£¬Ð´³öÏàÓ¦µÄ¼¯ºÏSºÍT£»
£¨II£©¶ÔÈκξßÓÐÐÔÖÊPµÄ¼¯ºÏA£¬Ö¤Ã÷£º£»
£¨III£©ÅжÏmºÍnµÄ´óС¹Øϵ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨I£©ÀûÓÃÐÔÖÊPµÄ¶¨ÒåÅжϳö¾ßÓÐÐÔÖÊPµÄ¼¯ºÏ£¬ÀûÓü¯ºÏS£¬TµÄ¶¨Òåд³öS£¬T£®
£¨II£©¾Ý¾ßÓÐÐÔÖÊPµÄ¼¯ºÏÂú×ãa¡ÊA£¬×ÜÓÐ-a∉A£¬µÃµ½0∉AµÃµ½£¨ai£¬ai£©∉T£»µ±£¨ai£¬aj£©¡ÊTʱ£¬£¨aj£¬ai£©∉T£¬Çó³öTÖеÄÔªËظöÊý£®
£¨III£©¶ÔÓ¦SÖеÄÔªËؾÝS£¬TµÄ¶¨ÒåµÃµ½Ò²ÊÇTÖеÄÔªËØ£¬·´Ö®¶ÔÓÚTÖеÄÔªËØÒ²ÊÇsÖеÄÔªËØ£¬µÃµ½Á½¸ö¼¯ºÏÖеÄÔªËØÏàͬ£®
½â´ð£º£¨I£©½â£º¼¯ºÏ{0£¬1£¬2£¬3}²»¾ßÓÐÐÔÖÊP£®
¼¯ºÏ{-1£¬2£¬3}¾ßÓÐÐÔÖÊP£¬ÆäÏàÓ¦µÄ¼¯ºÏSºÍTÊÇ
S=£¨-1£¬3£©£¬£¨3£¬-1£©£¬T=£¨2£¬-1£©£¬£¨2£¬3£©£®
£¨II£©Ö¤Ã÷£ºÊ×ÏÈ£¬ÓÉAÖÐÔªËع¹³ÉµÄÓÐÐòÊý¶Ô£¨ai£¬aj£©¹²ÓÐk2¸ö£®
ÒòΪ0∉A£¬ËùÒÔ£¨ai£¬ai£©∉T£¨i=1£¬2£¬£¬k£©£»
ÓÖÒòΪµ±a¡ÊAʱ£¬-a∉Aʱ£¬-a∉A£¬
ËùÒÔµ±£¨ai£¬aj£©¡ÊTʱ£¬£¨aj£¬ai£©∉T£¨i£¬j=1£¬2£¬£¬k£©£®
´Ó¶ø£¬¼¯ºÏTÖÐÔªËصĸöÊý×î¶àΪ£¬
¼´£®
£¨III£©½â£ºm=n£¬Ö¤Ã÷ÈçÏ£º
£¨1£©¶ÔÓÚ£¨a£¬b£©¡ÊS£¬¸ù¾Ý¶¨Ò壬
a¡ÊA£¬b¡ÊA£¬ÇÒa+b¡ÊA£¬´Ó¶ø£¨a+b£¬b£©¡ÊT£®
Èç¹û£¨a£¬b£©Ó루c£¬d£©ÊÇSµÄ²»Í¬ÔªËØ£¬
ÄÇôa=cÓëb=dÖÐÖÁÉÙÓÐÒ»¸ö²»³ÉÁ¢£¬
´Ó¶øa+b=c+dÓëb=dÖÐÒ²ÖÁÉÙÓÐÒ»¸ö²»³ÉÁ¢£®
¹Ê£¨a+b£¬b£©Ó루c+d£¬d£©Ò²ÊÇTµÄ²»Í¬ÔªËØ£®
¿É¼û£¬SÖÐÔªËصĸöÊý²»¶àÓÚTÖÐÔªËصĸöÊý£¬¼´m¡Ün£¬
£¨2£©¶ÔÓÚ£¨a£¬b£©¡ÊT£¬¸ù¾Ý¶¨Ò壬a¡ÊA£¬b¡ÊA£¬
ÇÒa-b¡ÊA£¬´Ó¶ø£¨a-b£¬b£©¡ÊS£®
Èç¹û£¨a£¬b£©Ó루c£¬d£©ÊÇTµÄ²»Í¬ÔªËØ£¬
ÄÇôa=cÓëb=dÖÐÖÁÉÙÓÐÒ»¸ö²»³ÉÁ¢£¬
´Ó¶øa-b=c-dÓëb=dÖÐÒ²²»ÖÁÉÙÓÐÒ»¸ö²»³ÉÁ¢£¬
¹Ê£¨a-b£¬b£©Ó루c-d£¬d£©Ò²ÊÇSµÄ²»Í¬ÔªËØ£®
¿É¼û£¬TÖÐÔªËصĸöÊý²»¶àÓÚSÖÐÔªËصĸöÊý£¬¼´n¡Üm£¬
ÓÉ£¨1£©£¨2£©¿ÉÖª£¬m=n£®
µãÆÀ£º±¾Ì⿼²éÀûÓÃÌâÖеÄж¨Òå½âÌ⣻ж¨ÒåÌâÊǽü¼¸Äê³£¿¼µÄÌâÐÍ£¬ÒªÖØÊÓ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏA=a1£¬a2£¬¡­£¬anÖеÄÔªËض¼ÊÇÕýÕûÊý£¬ÇÒa1£¼a2£¼¡­£¼an£¬¶ÔÈÎÒâµÄx£¬y¡ÊA£¬ÇÒx¡Ùy£¬ÓÐ|x-y|¡Ý
xy
25
£®
£¨¢ñ£©ÇóÖ¤£º
1
a1
-
1
an
¡Ý
n-1
25
£»    
£¨¢ò£©ÇóÖ¤£ºn¡Ü9£»
£¨¢ó£©¶ÔÓÚn=9£¬ÊÔ¸ø³öÒ»¸öÂú×ãÌõ¼þµÄ¼¯ºÏA£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏA=a1£¬a2£¬a3£¬¡­£¬an£¬ÆäÖÐai¡ÊR£¨1¡Üi¡Ün£¬n£¾2£©£¬l£¨A£©±íʾºÍai+aj£¨1¡Üi£¼j¡Ün£©ÖÐËùÓв»Í¬ÖµµÄ¸öÊý£®
£¨¢ñ£©É輯ºÏP=2£¬4£¬6£¬8£¬Q=2£¬4£¬8£¬16£¬·Ö±ðÇól£¨P£©ºÍl£¨Q£©£»
£¨¢ò£©Èô¼¯ºÏA=2£¬4£¬8£¬¡­£¬2n£¬ÇóÖ¤£ºl(A)=
n(n-1)2
£»
£¨¢ó£©l£¨A£©ÊÇ·ñ´æÔÚ×îСֵ£¿Èô´æÔÚ£¬Çó³öÕâ¸ö×îСֵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏA={a1£¬a2£¬¡­£¬an}ÖеÄÔªËض¼ÊÇÕýÕûÊý£¬ÇÒa1£¼a2£¼¡­£¼an£¬¶ÔÈÎÒâµÄx£¬y¡ÊA£¬ÇÒx¡Ùy£¬¶¼ÓÐ|x-y| ¡Ý
xy
36
£®
£¨1£©ÇóÖ¤£º
1
a1
-
1
an
¡Ý
n-1
36
£»£¨Ìáʾ£º¿ÉÏÈÇóÖ¤
1
ai
-
1
ai+1
¡Ý
1
36
£¨i=1£¬2£¬¡­£¬n-1£©£¬È»ºóÔÙÍê³ÉËùÒªÖ¤µÄ½áÂÛ£®£©
£¨2£©ÇóÖ¤£ºn¡Ü11£»
£¨3£©¶ÔÓÚn=11£¬ÊÔ¸ø³öÒ»¸öÂú×ãÌõ¼þµÄ¼¯ºÏA£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏA={a1£¬a2£¬a3£¬¡­£¬an}£¬ÆäÖÐai¡ÊR£¨1¡Üi¡Ün£¬n£¾2£©£¬l£¨A£©±íʾai+aj£¨1¡Üi£¼j¡Ün£©ÖÐËùÓв»Í¬ÖµµÄ¸öÊý£®
£¨1£©É輯ºÏP={2£¬4£¬6£¬8}£¬Q={2£¬4£¬8£¬16}£¬·Ö±ðÇól£¨P£©ºÍl£¨Q£©µÄÖµ£»
£¨2£©Èô¼¯ºÏA={2£¬4£¬8£¬¡­£¬2n}£¬Çól£¨A£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏA={a1£¬a2£¬¡­£¬an}£¬ÆäÖÐai¡ÊR£¨1¡Üi¡Ün£¬n£¾2£©£¬l£¨A£©±íʾºÍai+aj£¨1¡Üi£¼j¡Ün£©ÖÐËùÓв»Í¬ÖµµÄ¸öÊý£®
£¨¢ñ£©Èô¼¯ºÏA={2£¬4£¬8£¬16}£¬Ôòl£¨A£©=
 
£»
£¨¢ò£©µ±n=108ʱ£¬l£¨A£©µÄ×îСֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸