精英家教网 > 高中数学 > 题目详情

(本小题满分14分)

已知:向量O为坐标原点,动点M满足:.

求动点 M 的轨迹 C 的方程;

(2)已知直线都过点,且与轨迹C分别交于点D、E,试探究是否存在这样的直线?使得△BDE是等腰直角三角形.若存在,指出这样的直线共有几组(无需求出直线的方程);若不存在,请说明理由.

(1)解法1:设------------------------------ 1分

=>------ 4分

∴动点M 的轨迹为以为焦点,长轴长为 4的椭圆  -----------------5分

----------------------------- 6分

∴    动点M 的轨迹 C的方程为   ---------------------------------7分

[解法2:设点

------------------------2分

     

------------------------------ 4分

∴点 M 的轨迹C是以为焦点,长轴长为 4 的椭圆     ------------5分

  ∴      --------------------------6分

∴    动点M 的轨迹 C的方程为   ------------------7分]

 (2)由(1)知,轨迹C是椭圆,点是它的上顶点,             

设满足条件的直线存在,直线的方程为----①

则直线的方程为,-------------②--------------------------------------------------------------8分

将①代入椭圆方程并整理得:,可得,则.--9分

将②代入椭圆方程并整理得:,可得,则.---10分

由△BDE是等腰直角三角形得

----③--------12分

-----④-----------------------------------------------------------------------13分

∵方程④的根判别式,即方程④有两个不相等的实根,且不为1.

∴方程③有三个互不相等的实根.

即满足条件的直线存在,共有3组.-----------------------------------------------------------14分

(注:只答存在1组,给2分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案