精英家教网 > 高中数学 > 题目详情
设M=10a2+81a+207,P=a+2,Q=26-2a,若将lgM,lgQ,lgP适当排序后可构成公差为1的等差数列{an}的前三项.
(Ⅰ)求a的值及{an}的通项公式;
(Ⅱ)记函数f(x)=anx2+2an+1x+an+2(n∈N*)的图象在x轴上截得的线段长为bn,设 Tn=
14
(b1b2+b2b3+…+bn-1bn)
,求Tn
分析:(Ⅰ)依题意有-2<a<13,利用作差法可比较M,P,Q中M最大,而P,Q的大小需要根据a的范围来确定,结合等差数列及对数的运算性质可求出满足题意的a及通项
(Ⅱ)由等差数列的性质可得,2an+1=an+an+2,由f(x)=0时,(x+1)(anx+an+2)=0,从而可求得bn=|x1-x2|=|
an+2
an
-1|=|
2
an
|
,结合an=n-2lg2>0,可得bn,然后代入,利用裂项求和即可
解答:解:(Ⅰ)依题意有-2<a<13,
∵M-P=10a2+80a+205>0,M-Q=10a2+83a+181>0,
∴M最大.
又P-Q=-24+3a,
当-2<a<8时,P<Q,lgP+1=lgQ.
∴10P=Q,
a=
1
2
,此时M>Q>P,且满足lgM=1+lgQ.
a=
1
2
符合题意.
当8<a<13时,P>Q,lgP=1+lgQ.
∴10Q=P,
a=
86
7

但此时不满足lgM=1+lgP.
a≠
86
7

∴{an}的前三项为lgP,lgQ,lgM,此时a=
1
2

∴an=lgP+(n-1)×1=n-2lg2.
(Ⅱ)∵2an+1=an+an+2
∴x=-1是函数f(x)=anx2+2an+1x+an+2(n∈N*)的零点
即f(x)=0时,(x+1)(anx+an+2)=0
bn=|x1-x2|=|
an+2
an
-1|=|
2
an
|
,||bn=|x1-x2|=|-1-(-
an+2
an
)|

又∵an=n-2lg2>0,
bn=
2
an

bn-1bn=
2
an-1
×
2
an
=4(
1
an-1
-
1
an
)

Tn=
1
4
(b1b2+b2b3+…+bn-1bn)=
1
4
×4[(
1
a1
-
1
a2
)+(
1
a2
-
1
a3
)+…+(
1
an-1
-
1
an
)]

=
1
a1
-
1
an
=
1
1-2lg2
-
1
n-2lg2

=
n-1
(1-2lg2)(n-2lg2)
点评:本题主要考查了等差数列的通项公式的应用,等差数列的性质的应用及数列的裂项求和方法的应用,试题具有一定的综合性
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设M=10a2+81a+207,P=a+2,Q=26-2a;若将lgM,lgQ,lgP适当排序后可构成公差为1的等差数列{an}的前三项.
(1)试比较M、P、Q的大小;
(2)求a的值及{an}的通项;
(3)记函数f(x)=anx2+2an+1x+an+2(n∈N*)的图象在x轴上截得的线段长为bn,设Tn=
1
4
(b1b2+b2b3+…+bn-1bn
)(n≥2),求Tn,并证明T2T3T4…Tn
2n-1
n

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设M=10a2+81a+207,P=a+2,Q=26-2a;若将lgM,lgQ,lgP适当排序后可构成公差为1的等差数列{an}的前三项.
(1)试比较M、P、Q的大小;
(2)求a的值及{an}的通项;
(3)记函数f(x)=anx2+2an+1x+an+2(n∈N*)的图象在x轴上截得的线段长为bn,设Tn=
1
4
(b1b2+b2b3+…+bn-1bn
)(n≥2),求Tn,并证明T2T3T4…Tn
2n-1
n

查看答案和解析>>

科目:高中数学 来源:2012-2013学年新课标高三(上)数学一轮复习单元验收5(理科)(解析版) 题型:解答题

设M=10a2+81a+207,P=a+2,Q=26-2a,若将lgM,lgQ,lgP适当排序后可构成公差为1的等差数列{an}的前三项.
(Ⅰ)求a的值及{an}的通项公式;
(Ⅱ)记函数的图象在x轴上截得的线段长为bn,设 ,求Tn

查看答案和解析>>

科目:高中数学 来源:2012-2013学年新课标高三(上)数学一轮复习单元验收5(文科)(解析版) 题型:解答题

设M=10a2+81a+207,P=a+2,Q=26-2a,若将lgM,lgQ,lgP适当排序后可构成公差为1的等差数列{an}的前三项.
(Ⅰ)求a的值及{an}的通项公式;
(Ⅱ)记函数的图象在x轴上截得的线段长为bn,设 ,求Tn

查看答案和解析>>

同步练习册答案