精英家教网 > 高中数学 > 题目详情
已知y=f(x)的定义域为R,且对任意的实数x,恒有等式2f(x)+f(-x)-3•2sinx=0成立.
(1)试求f(x)的解析式;
(2)判断f(x)在[-
π
2
π
2
]
的单调性,并用单调性定义予以证明;
(3)若f(x)=
3
2
2
,求满足条件的所有实数x的集合.
分析:(1)由题意可得2f(-x)+f(x)-3•2sin(-x)=0,联立消去f(-x),可得函数解析式;
(2)可判函数单调递增,用单调性的定义法可证明;
(3)由(2)可知函数在[
π
2
2
]
上单调递减,周期为2π,进而可得sinx=
1
2
,由三角函数的值可解.
解答:解:(1)∵2f(x)+f(-x)-3•2sinx=0,
∴2f(-x)+f(x)-3•2sin(-x)=0,
联立消去f(-x),可得f(x)=21+sinx-
1
2sinx

(2)f(x)在[-
π
2
π
2
]
上单调递增,
证明:任意x1x2∈[-
π
2
π
2
]
,设x1<x2,则
f(x1)-f(x2)=(21+sinx1-
1
2sinx1
)-(21+sinx2-
1
2sinx2
)
=2(2sinx1-2sinx2)+(
1
2sinx2
-
1
2sinx1
)
=(2sinx1-2sinx2)(2+
1
2sinx1+sinx2
)

因为x1x2∈[-
π
2
π
2
]
,所以sinx1<sinx2
所以2sinx12sinx2,又2sinx1+sinx2>0
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
所以f(x)在[-
π
2
π
2
]
上单调递增.
(3)由(2)过程容易知道,f(x)在[
π
2
2
]
上单调递减,
又f(x)=f(x+2π),所以f(x)是最小正周期为2π的周期函数.
设t=2sinx,则t∈(0,2],由2t-
1
t
=
3
2
2
,解得t=
2
t=-
2
4
(舍).
所以2sinx=
2
=2
1
2
sinx=log22
1
2
=
1
2

x=
π
6
+2kπ,k∈Z
,或x=
6
+2kπ,k∈Z

故满足条件的所有实数x的集合为{x|x=
π
6
+2kπ,或x=
6
+2kπ,k∈Z}
点评:本题考查函数解析式的求法,以及函数单调性的判断与证明,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知:射线OA为y=kx(k>0,x>0),射线OB为y=-kx(x>0),动点P(x,y)在∠AOx的内部,PM⊥OA于M,PN⊥OB于N,四边形ONPM的面积恰为k.
(1)当k为定值时,动点P的纵坐标y是横坐标x的函数,求这个函数y=f(x)的解析式;
(2)根据k的取值范围,确定y=f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象经过点(2,4),对于偶函数y=g(x)(x∈R),当x≥0时,g(x)=f(x)-2x.
(1)求函数y=f(x)的解析式;
(2)求当x<0时,函数y=g(x)的解析式,并在给  定坐标系下,画出函数y=g(x)的图象;
(3)写出函数y=|g(x)|的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+
5x
的定义域为(0,+∞).设点P是函数图象上的任意一点,过点P分别作直线y=2x和y轴的垂线,垂足分别为M、N.
(1)|PM|•|PN|是否为定值?若是,求出该定值;若不是,说明理由;
(2)设点O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax+b存在极值点.
(1)求a的取值范围;
(2)过曲线y=f(x)外的点P(1,0)作曲线y=f(x)的切线,所作切线恰有两条,切点分别为A、B.
(ⅰ)证明:a=b;
(ⅱ)请问△PAB的面积是否为定值?若是,求此定值;若不是求出面积的取值范围.

查看答案和解析>>

同步练习册答案