精英家教网 > 高中数学 > 题目详情
11.在△ABC中,角A,B,C所对的边分别为a,b,c,且a=2,b=3,c=$\sqrt{7}$,则△ABC的面积是(  )
A.2B.2$\sqrt{3}$C.$\frac{\sqrt{6}}{2}$D.$\frac{3\sqrt{3}}{2}$

分析 利用余弦定理可得C,再利用三角形面积计算公式即可得出.

解答 解:cosC=$\frac{{2}^{2}+{3}^{2}-(\sqrt{7})^{2}}{2×2×3}$=$\frac{1}{2}$,C∈(0,π),
∴C=$\frac{π}{3}$.
∴S△ABC=$\frac{1}{2}absinC$=$\frac{1}{2}×2×3×sin\frac{π}{3}$=$\frac{3\sqrt{3}}{2}$.
故选:D.

点评 本题考查了余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.[普通中学做]若函数f(x)=sinωx(ω>0)在[$\frac{π}{6}$,$\frac{π}{2}$]上单调递增,则ω的取值范围是( 0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.甲袋有1个白球、2个红球、3个黑球;乙袋有2个白球、3个红球、1个黑球,所有球除颜色有区别外,其余都相同,现从两袋中各取一球.
(Ⅰ)求出所有可能出现的情况;
(Ⅱ)求两球颜色相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.观察下列数列的特点:1,2,2,3,3,3,4,4,4,4,…,其中第20项是(  )
A.5B.6C.7D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.不等式x(x-1)>2的解集为(  )
A.{x|-1<x<2}B.{x|-2<x<1}C.{x|x<-2或x>1}D.{x|x<-1或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=ax+b,若f(1)=f′(1)=2,则f(2)=(  )
A.1B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)的定义域为(0,+∞),其导函数为f′(x),对任意正实数x满足xf′(x)>f(x),且f(2)=0.且不等式f(x)<0的解集为(  )
A.(0,2)B.(2,+∞)C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)设x,y,z∈(0,+∞),a=x+$\frac{1}{y}$,b=y+$\frac{1}{z}$,c=z+$\frac{1}{x}$,求证:a,b,c三数中至少有一个不小于2;
(2)已知a,b,c是△ABC的三条边,求证:$\frac{a+b}{1+a+b}$>$\frac{c}{1+c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.A,B,C,D,E五名大学生被随机地分到甲、乙、丙、丁四所学校实习,每所学校至少负责安排一名实习生.
(1)求A,B两人同时去甲学校实习的概率;
(2)求A,B两人不去同一所学校实习的概率;
(3)设随机变量ξ为这五名学生中去甲学校实习的人数,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案