【题目】已知p:方程表示双曲线,q:表示焦点在x轴上的椭圆.
(1)若“p且q”是真命题,求实数m的取值范围;
(2)若“p且q”是假命题,“p或q”是真命题,求实数m的取值范围.
【答案】(1);(2)或
【解析】
(1)求出命题为真命题时的取值范围,再根据“且”是真命题列不等式组,求出的取值范围;(2)当“且”是假命题, “或”是真命題时, —真一假,分两种情况讨论,对于真假以及假真分别列不等式组,分别解不等式组,然后求并集即可求得实数的取值范围..
(1)命题p:方程表示双曲线,
则,解得;
命题q:表示焦点在轴上的椭圆,
则,解得2<m<6;
若“p且q”是真命题,则,解得2<m<6,
∴实数m的取值范围是2<m<6;
(2)若“p且q”是假命题,“p或q”是真命题,
则p、q一真一假;
当p真q假时,,
解得1<m≤2;
当p假q真时,
解得4≤m<6;
综上,实数m的取值范围是1<m≤2或4≤m<6.
科目:高中数学 来源: 题型:
【题目】设a,b,c是△ABC的三边,P: , Q:方程x2 +2ax+b2 = 0与方程x2 +2cx-b2 = 0有公共根. 则P是Q的_____.(填:充分不必要条件,必要而不充分条件,充要条件,既不充分也不必要条件)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2﹣ax﹣1(a∈R).
(1)若对任意实数x,f(x)<0恒成立,求实数a的取值范围;
(2)当a>0时,解关于x的不等式f(x)<2x﹣3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}为等比数列,
(1)若an>0,且a2a4+2a3a5+a4a6=25,求a3+a5.
(2)a1+a2+a3=7,a1a2a3=8,求an.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(,﹣1),B(2,1),函数f(x)=log2x.
(1)过原点O作曲线y=f(x)的切线,求切线的方程;
(2)曲线y=f(x)(≤x≤2)上是否存在点P,使得过P的切线与直线AB平行?若存在,则求出点P的横坐标,若不存在,则请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,椭圆的左右顶点分别是,为直线上一点(点在轴的上方),直线与椭圆的另一个交点为,直线与椭圆的另一个交点为.
(1)若的面积是的面积的,求直线的方程;
(2)设直线与直线的斜率分别为,求证:为定值;
(3)若的延长线交直线于点,求线段长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,椭圆的左右顶点分别是,为直线上一点(点在轴的上方),直线与椭圆的另一个交点为,直线与椭圆的另一个交点为.
(1)若的面积是的面积的,求直线的方程;
(2)设直线与直线的斜率分别为,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市有一直角梯形绿地ABCD,其中∠ABC=∠BAD=90°,AD=DC=2km,BC=1km.现过边界CD上的点E处铺设一条直的灌溉水管EF,将绿地分成面积相等的两部分.
(1)如图①,若E为CD的中点,F在边界AB上,求灌溉水管EF的长度;
(2)如图②,若F在边界AD上,求灌溉水管EF的最短长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com