精英家教网 > 高中数学 > 题目详情

【题目】如图,已知抛物线C,过抛物线焦点F的直线交抛物线CAB两点,P是抛物线外一点,连接分别交抛物线于点CD,且,设的中点分别为MN.

1)求证:轴;

2)若,求面积的最小值.

【答案】1)证明见解析(2

【解析】

1)设直线的方程为,联立直线方程和抛物线方程,消去后利用韦达定理及中点坐标公式即可求得,即可求得轴;

2)根据向量的坐标运算及点在抛物线上,即可求得,根据三角形的面积公式即可求得面积的最小值.

1)抛物线C的焦点,设

直线的方程为

,消去x,整理得

,因为

所以,即

,所以轴.

2)由(1)可知,,则

,由,得

代入抛物线,得到

同理

所以为方程

,所以

MNP三点共线,

,所以

所以

面积的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

)当时,求曲线在点处的切线方程;

)若,讨论函数的单调性与单调区间;

)若有两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当吋,解不等式

2)设.

①当时,若存在,使得,证明:

②当时,讨论的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为,斜率为的直线与椭圆交于两点,点在直线的左上方.

1)若以为直径的圆恰好经过椭圆右焦点,求此时直线的方程;

2)求证:的内切圆的圆心在定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数在点处的切线方程;

2)设函数上有且只有一个零点,求的取值范围.(其中为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

的必要不充分条件

②函数的最小值为2

③命题的否定是

④已知双曲线过点,且渐近线为,则离心率,其中所有正确命题的编号是:_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】检验中心为筛查某种疾病,需要检验血液是否为阳性,对份血液样本,有以下两种检验方式:①逐份检验,需要检验次;②混合检验,即将其中)份血液样本分别取样混合在一起检验,若检验结果为阴性,这份的血液全为阴性,因而这份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这份血液究竟哪几份为阳性,再对这份再逐份检验,此时这份血液的检验次数总共为.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为.

1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;

2)现取其中)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为点.时,根据的期望值大小,讨论当取何值时,采用逐份检验方式好?

(参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲、乙、丙、丁、戊5种在线教学软件,若某学校要从中随机选取3种作为教师“停课不停学”的教学工具,则其中甲、乙、丙至多有2种被选取的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,为抛物线上不同的两点,且,点于点.

(1)求的值;

(2)过轴上一点 的直线两点,的准线上的射影分别为的焦点,若,求中点的轨迹方程.

查看答案和解析>>

同步练习册答案