精英家教网 > 高中数学 > 题目详情

【题目】若关于x的不等式xex﹣2ax+a<0的非空解集中无整数解,则实数a的取值范围是(
A.[
B.[
C.[ ,e]
D.[ ,e]

【答案】B
【解析】解:设g(x)=xex , f(x)=2ax﹣a, 由题意可得g(x)=xex在直线f(x)=2ax﹣a下方,
g′(x)=(x+1)ex
f(x)=2ax﹣a恒过定点( ,0),
设直线与曲线相切于(m,n),
可得2a=(m+1)em , mem=2am﹣a,
消去a,可得2m2﹣m﹣1=0,解得m=1(舍去)或﹣
则切线的斜率为2a=(﹣ +1)e
解得a=
又由题设原不等式无整数解,
由图象可得当x=﹣1时,g(﹣1)=﹣e1 , f(﹣1)=﹣3a,
由f(﹣1)=g(﹣1),可得a=
由直线绕着点( ,0)旋转,
可得 ≤a<
故选:B.

设g(x)=xex , f(x)=2ax﹣a,求出g(x)的导数,判断直线恒过定点,设直线与曲线相切于(m,n),求得切线的斜率和切点在直线上和曲线上,解方程可得a,再由题意可得当x=﹣1时,求得a,通过图象观察,即可得到a的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱台 平面 分别为的中点.

1求证: 平面

2求平面与平面所成角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为 ,上、下顶点分别是 ,点 的中点,若 ,且 .
(1)求椭圆 的标准方程;
(2)过 的直线 与椭圆 交于不同的两点 ,求 的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1处取得极值,求a的值;
(Ⅱ)若f(x)在区间(1,2)上单调递增,求a的取值范围;
(Ⅲ)讨论函数g(x)=f'(x)﹣x的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数上的奇函数,求实数a的值;

(2)函数为减函数,求实数a的取值范围;

(3)是否存在实数(),使得 在闭区间上的最大值为2,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三数学竞赛初赛考试结束后,对考生成绩进行统计(考生成绩均不低于90分,满分150分),将成绩按如下方式分为六组,第一组.如图为其频率分布直方图的一部分,若第四、五、六组的人数依次成等差数列,且第六组有4人.
(1)请补充完整频率分布直方图,并估计这组数据的平均数M;
(2)现根据初赛成绩从第四组和第六组中任意选2人,记他们的成绩分别为x,y.若|x﹣y|≥10,则称此二人为“黄金帮扶组”,试求选出的二人为“黄金帮扶组”的概率P1
(3)以此样本的频率当作概率,现随机在这组样本中选出3名学生,求成绩不低于120分的人数ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数上是单调递增函数,则的取值范围是______.

【答案】

【解析】

又函数单调递增,

上恒成立,

上恒成立。

又当时,

故实数的取值范围是

答案

点睛对于导函数和函数单调性的关系要分清以下结论:

1)当时,若在区间D上单调递增);

2)若函数在区间D上单调递增),在区间D上恒成立即解题时可将函数单调性的问题转化为的问题,但此时不要忘记等号

型】填空
束】
19

【题目】某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,AC=BC.O为AB的中点,OF⊥EC. (Ⅰ)求证:OE⊥FC:
(Ⅱ)若 = 时,求二面角F﹣CE﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点分别是椭圆的左右顶点, 为其右焦点, 的等比中项是,椭圆的离心率为.

(1)求椭圆的方程;

(2)设不过原点的直线与该轨迹交于两点,若直线的斜率依次成等比数列,求的面积的取值范围.

查看答案和解析>>

同步练习册答案