精英家教网 > 高中数学 > 题目详情
6.直线l的一个方向向量$\overrightarrow d=(1,2)$,则l与直线x-y+2=0的夹角为arccos$\frac{3\sqrt{10}}{10}$.(结果用反三角函数值表示)

分析 先求出直线x-y+2=0的方向向量是(1,1),又直线l的一个方向向量$\overrightarrow d=(1,2)$,从而能求出直线l与x-y+2=0的夹角的余弦值,由此能求出直线l与x-y+2=0的夹角大小.

解答 解:∵直线x-y+2=0的方向向量是(1,1),又直线l的一个方向向量$\overrightarrow d=(1,2)$,
∴直线l与x-y+2=0的夹角的余弦值是$\frac{3}{\sqrt{2}×\sqrt{5}}$=$\frac{3\sqrt{10}}{10}$,
∴直线l与x-y+2=0的夹角大小为arccos$\frac{3\sqrt{10}}{10}$.
故答案为:arccos$\frac{3\sqrt{10}}{10}$.

点评 本题考查两直线夹角大小的求法,是基础题,解题时要认真审题,注意直线的方向向量的概念的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知a为实数,函数f(x)=a•lnx+x2-4x.
(Ⅰ)令a=-6,求函数f(x)的单调区间;
(Ⅱ)是否存在实数a,使得f(x)在x=1处取极值?证明你的结论;
(Ⅲ)若存在区间[2,3]⊆D,使得函数f(x)在D上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.用定义证明函数f(x)=3x-1在(-∞,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=f(x)的定义域是[0,2],则函数y=$\frac{f(2x)}{\sqrt{1-x}}$+lgx的定义域是(  )
A.[0,1]B.[0,1)C.[0,1)∪(1,4]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某种蔬菜基地种植西红柿由历年市场行情得知,从2月1日起的300天内,西红柿市场售价p与上市时间t的关系图是一条折线(如图(1)),种植成本Q与上市时间t的关系是一条抛物线(如图(2)).
(1)写出西红柿的市场售价与时间的函数解析式p=f(t).
(2)写出西红柿的种植成本与时间的函数解析式Q=g(t).
(3)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知:集合A={x|3<x≤6),B={x|m≤x≤2m+l}
(1)若m=2,求A∩B,A∪B;
(2)若A⊆B,求实数m的取值范围;
(3)若A∩B=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=loga(x+1),g(x)=loga(1-x)其中(a>0且a≠1).
(1)判断f(x)-g(x)的奇偶性,并说明理由;
(2)求使f(x)-g(x)>0成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解关于x的不等式:mx2-(2m+1)x+2>0(m∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.命题“?k∈R,使直线y=kx+1与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)无公共点”为假命题,则实数b的取值范围是b≥1且b≠2.

查看答案和解析>>

同步练习册答案