精英家教网 > 高中数学 > 题目详情

      设函数.

     (Ⅰ)求的最小值,并求使取得最小值的的集合;

     (Ⅱ)不画图,说明函数的图像可由的图象经过怎样的变化得到.

【解析】(1)

                  

                  

时,,此时

所以,的最小值为,此时x 的集合.

(2)横坐标不变,纵坐标变为原来的倍,得

  然后向左平移个单位,得

【考点定位】本题主要考查三角恒等变形、三角函数的图像及性质与三角函数图像的变换.考查逻辑推理和运算求解能力,中等难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,O是坐标原点,且∠AOP=
π
6
,∠AOQ=α,α∈[0,π).
(Ⅰ)若点Q的坐标是(
3
5
4
5
)
,求cos(α-
π
6
)
的值;
(Ⅱ)设函数f(α)=
OP
OQ
,求f(α)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2
3
sinxcosx
,求f(x)的最大值、最小正周期和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)已知:P(
3
2
1
2
)
Q(cosα,sinα)(α∈(
π
2
,π))
是坐标平面上的点,O是坐标原点.
(Ⅰ)若点Q的坐标是(-
3
5
,m)
,求cos(a-
π
6
)
的值;
(Ⅱ)设函数f(α)=
OP
OQ
,求f(a)的值域.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年四川绵阳高中高三第二次诊断性考试文科数学试卷(解析版) 题型:解答题

已知向量a=b=,设函数=ab

)求单调递增区间;

)若将的图象向左平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省株洲市高三第五次月考文科数学试卷(解析版) 题型:解答题

已知向量 与 共线,设函数

(1)求函数的周期及最大值;

(2)已知锐角 △ABC 中的三个内角分别为 A、B、C,若有,边 BC=,求 △ABC 的面积.

 

查看答案和解析>>

同步练习册答案