【题目】已知a>0,a≠1.设命题p:函数y=loga(x+1)在(0,+∞)内单调递减;命题q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.若p或q为真,p且q为假,求a的取值范围.
科目:高中数学 来源: 题型:
【题目】在△ABC中,已知内角A,B,C所对的边分别为a,b,c,向量m=(2sin B,- ),n=,且m∥n.
(1)求锐角B的大小;
(2)如果b=2,求△ABC的面积S△ABC的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列命题是全称命题还是存在性命题,并判断其真假:
(1)对任意x∈R,zx>0(z>0);
(2)对任意非零实数x1,x2,若x1<x2,则;
(3)α∈R,使得sin(α+)=sin α;
(4)x∈R,使得x2+1=0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点到坐标原点的距离和它到直线的距离之比是一个常数.
(1)求点的轨迹;
(2)若时得到的曲线是,将曲线向左平移一个单位长度后得到曲线,过点的直线与曲线交于不同的两点,过的直线分别交曲线于点,设, , ,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}. (Ⅰ)求a的值;
(Ⅱ)若f(x)﹣2f( )≤k恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|﹣2≤x<5},B={x|3x﹣5≥x﹣1}.
(1)求A∩B;
(2)若集合C={x|﹣x+m>0},且A∪C=C,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(xt)=xt2+bxt .
(1)若b=2,且xt=log2t,t∈[ ,2],求f(xt)的最大值;
(2)当y=f(xt)与y=f(f(xt))有相同的值域时,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆.
(1)若椭圆的右焦点坐标为,求的值;
(2)由椭圆上不同三点构成三角形称为椭圆的内接三角形.若以为直角顶点的椭圆的内接等腰直角三角形恰有三个,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点是菱形所在平面外一点, , 是等边三角形, , , 是的中点.
(Ⅰ)求证: 平面;
(Ⅱ)求证:平面平面;
(Ⅲ)求直线与平面的所成角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com