精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的一个顶点为,焦点在轴上,中心在原点.若椭圆短轴的上顶点到直线的距离为.

1)求椭圆的标准方程;

2)若椭圆的下顶点为,设直线与椭圆相交于不同的两点,当时,求的取值范围.

【答案】12

【解析】

1)根据椭圆的顶点坐标及焦点位置,可得;由上顶点到直线的距离,结合点到直线距离公式可求得,即可得椭圆的方程;

2)设,弦的中点,联立直线方程与椭圆方程,根据两个不同交点可知,得;由中点坐标公式及韦达定理表示出的坐标,由题意可知,进而由两条直线垂直时的斜率关系得,即,由上述三式即可确定的取值范围.

1)依题意可设椭圆方程为,则椭圆上顶点.

由题设,解得

因为焦点在轴上,所以舍去.

∴所求椭圆的方程为.

2)设,弦的中点.

,得.

∵直线与椭圆相交,

.

,从而.

由(1)得

.

又∵

,即.

把②代入①,得,解得

由②,得,解得.

综上求得的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

中,角ABC的对边分别为abc,面积为S,已知

)求证:成等差数列;

)若.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在信息时代的今天,随着手机的发展,“微信”越来越成为人们交流的一种方法,某机构对“使用微信交流”的态度进行调查,随机抽取了100人,他们年龄的频数分布及对“使用微信交流”赞成的人数如下表:(注:年龄单位:岁)

年龄

频数

10

30

30

20

5

5

赞成人数

9

25

24

9

2

1

(1)若以“年龄45岁为分界点”,由以上统计数据完成下面的列联表,并通过计算判断是否在犯错误的概率不超过0.001的前提下认为“使用微信交流的态度与人的年龄有关”?

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(2)若从年龄在调查的人中各随机选取1人进行追踪调查,求选中的2人中赞成“使用微信交流”的人数恰好为1人的概率.

0.025

0.010

0.005

0.001

3.841

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直角三角形ABC的三个顶点都在椭圆上,其中A01)为直角顶点.若该三角形的面积的最大值为,则实数a的值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设首项为1的正项数列{an}的前n项和为Sn,数列的前n项和为Tn,且,其中p为常数.

1)求p的值;

2)求证:数列{an}为等比数列;

3)证明:数列an2xan+12yan+2成等差数列,其中xy均为整数的充要条件是x1,且y2”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCDEF分别是ABPD的中点,且PA=AD

(Ⅰ)求证:AF∥平面PEC

(Ⅱ)求证:平面PEC⊥平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的短轴长为,直线与椭圆相交于两点,线段的中点为.连线的斜率为时,直线的倾斜角为

1)求椭圆的标准方程;

2)若是以为直径的圆上的任意一点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在区间上存在零点,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是(

A.B.C.D.

查看答案和解析>>

同步练习册答案