精英家教网 > 高中数学 > 题目详情
已知R为全集,A={x|log
1
2
(3-x)≥-2}
,B={y|y=2x,x∈R},则(CRA)∩B=(  )
A、φ
B、(0,+∞)
C、(-∞,-1)∪(0,+∞)
D、[3,+∞)
分析:根据对数不等式的解法,我们易求出集合A,由指数函数的性质,我们易求出集合B,代入(CRA)∩B即可得到答案.
解答:解:∵A={x|log
1
2
(3-x)≥-2}
={x|0<3-x≤4}
∴A=[-1,3)
又∵B={y|y=2x,x∈R},
∴B=(0,+∞)
∴(CRA)∩B=((-∞,-1)∪[3,+∞))∩(0,+∞)=[3,+∞)
故选D
点评:本题考查的知识点是对数不等式的解法,指数函数的值域,集合交、并、补的混合运算,解答的关键是根据不等式的解法和指数函数的值域的求法求出集合A与集合B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知R为全集,A={x|-1≤x<3},B={x|
5x+2
≥1},求(CUA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知R为全集,A={y|y=2x-1},B={x|log2x≤1},求A∩CRB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知R为全集,A={x|log 
12
(3-x)≥-2},B={x|3 -x2+x+6≥1},求(?RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知R为全集,A={x|
x+13-x
≥0},B={x|x2≤5x-6}.
(1)求A,B,A∩B,A∪B;
(2)求(?RA)∪(?RB).

查看答案和解析>>

同步练习册答案