精英家教网 > 高中数学 > 题目详情

【题目】某单位组织“学习强国”知识竞赛,选手从6道备选题中随机抽取3道题.规定至少答对其中的2道题才能晋级.甲选手只能答对其中的4道题。

(1)求甲选手能晋级的概率;

(2)若乙选手每题能答对的概率都是,且每题答对与否互不影响,用数学期望分析比较甲、乙两选手的答题水平。

【答案】(1);(2)乙选手比甲选手的答题水平高

【解析】

1)解法一:分类讨论,事件“甲选手能晋级”包含“甲选手答对道题”和“甲选手答对道题”,然后利用概率加法公式求出所求事件的概率;

解法二:计算出事件“甲选手能晋级”的对立事件“甲选手答对道题”的概率,然后利用对立事件的概率公式可计算出答案;

2)乙选手答对的题目数量为,甲选手答对的数量为,根据题意知,随机变量服从超几何分布,利用二项分布期望公式求出,再利用超几何分布概率公式列出随机变量的分布列,并计算出,比较的大小,然后可以下结论。

解法一:(1)记“甲选手答对道题”为事件,“甲选手能晋级”为事件,则

2)设乙选手答对的题目数量为,则,故

设甲选手答对的数量为,则的可能取值为

故随机变量的分布列为

所以,,则

所以,乙选手比甲选手的答题水平高;

解法二:(1)记“甲选手能晋级”为事件,则

2)同解法二。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知在等腰梯形中,=60°,沿折成三棱柱

(1)若分别为的中点,求证:∥平面

(2)若,求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为实常数.

)判断的奇偶性;

)若对任意,使不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)完游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.

1)设分别表示甲、乙抽到的牌的数字,写出甲乙二人抽到的牌的所有情况;

2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?

3)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜,你认为此游戏是否公平,说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有个红球、个白球的甲箱和装有个红球、个白球的乙箱中,各随机摸出一个球,在摸出的个球中,若都是红球,则获得一等奖;若只有个红球,则获得二等奖;若没有红球,则不获奖.

(1)求顾客抽奖次能获奖的概率;

(2)若某顾客有次抽奖机会,记该顾客在次抽奖中获一等奖的次数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两人玩一种游戏,每次由甲、乙各出1到5根手指,若和为偶数算甲赢,否则算乙赢.

(1)若以表示和为6的事件,求

(2)现连玩三次,若以表示甲至少赢一次的事件,表示乙至少赢两次的事件,试问是否为互斥事件?为什么?

(3)这种游戏规则公平吗?试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某儿童玩具生产厂一车间计划每天生产遥控小车模型、遥控飞机模型、遥控火车模型这三种玩具共个,生产一个遥控小车模型需分钟,生产一个遥控飞机模型需分钟,生产一个遥控火车模型需分钟,已知总生产时间不超过分钟,若生产一个遥控小车模型可获利元,生产一个遥控飞机模型可获利元,生产一个遥控火车模型可获利元,该公司合理分配生产任务可使每天的利润最大,则最大利润是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A.因为,所以是函数的一个周期;

B.因为,所以是函数的最小正周期;

C.因为时,等式成立,所以是函数的一个周期;

D.因为,所以不是函数的一个周期.

查看答案和解析>>

同步练习册答案