精英家教网 > 高中数学 > 题目详情

【题目】设(x+2)n=a0+a1x+a2x2+…+anxn(n∈N*,n≥2),且a0 , a1 , a2成等差数列.
(1)求(x+2)n展开式的中间项;
(2)求(x+2)n展开式所有含x奇次幂的系数和.

【答案】
(1)解: ,∴

∵a0,a1,a2成等差数列,∴

解得:n=8或n=1(舍去)

∴(x+2)n展开式的中间项是


(2)解:在 中,

令x=1,则38=a0+a1+a2+a3+…+a7+a8

令x=﹣1,则1=a0﹣a1+a2﹣a3+…﹣a7+a8

两式相减得:


【解析】(1)利用通项公式及其a0 , a1 , a2成等差数列.可得n.进而得出.(2)在 中,分别令令x=1,x=﹣1,即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在单调递增数列{an}中,a1=2,a2=4,且a2n1 , a2n , a2n+1成等差数列,a2n , a2n+1 , a2n+2成等比数列,n=1,2,3,…. (Ⅰ)(ⅰ)求证:数列 为等差数列;
(ⅱ)求数列{an}的通项公式.
(Ⅱ)设数列 的前n项和为Sn , 证明:Sn ,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a、b、c,设向量 =(a,c), =(cosC,cosA).
(1)若 ,a= c,求角A;
(2)若 =3bsinB,cosA= ,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若acosA=bsinb,且 ,则sinA+sinC的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在无重复数字的五位数a1a2a3a4a5中,若a1<a2 , a2>a3 , a3<a4 , a4>a5时称为波形数,如89674就是一个波形数,由1,2,3,4,5组成一个没有重复数字的五位数是波形数的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某石化集团获得了某地深海油田区块的开发权,集团在该地区随机初步勘探了部分几口井,取得了地质资料,进入全面勘探时期后,集团按网络点来布置井位进行全面勘探,由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见如表:

(参考公式和计算结果:

(1)1~6号井位置线性分布,借助前5组数据(坐标)求得回归直线方程为的值,并估计的预报值;

(2)现准备勘探新井若通过1357号并计算出的( 精确到0.01),设 均不超过10%时,使用位置最接近的已有旧井否则在新位置打开,请判断可否使用旧井?

(3)设出油量与勘探深度的比值不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且 asinA=( b﹣c)sinB+( c﹣b)sinC.
(1)求角A的大小;
(2)若a= ,cosB= ,D为AC的中点,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为曲线上两点, 的横坐标之和为2.

1)求直线的斜率;

(2)设为曲线上一点,曲线在点处的切线与直线平行,且求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校学生总数为8000人,其中一年级1600人,二年级3200人,三年级2000人,四年级1200人.为了完成一项调查,决定采用分层抽样的方法,从中抽取容量为400的样本.
(1)各个年级分别抽取了多少人?
(2)若高校教职工有505人,需要抽取50个样本,你会采用哪种抽样方法,请写出具体抽样过程.

查看答案和解析>>

同步练习册答案