精英家教网 > 高中数学 > 题目详情
根据已知条件完成下列小题:
(1)已知椭圆的焦点在y轴,且a+c=20,a-c=4,求椭圆的标准方程;
(2)已知双曲线的焦点在x轴,焦距是8,离心率e=2,求双曲线的标准方程.
考点:椭圆的简单性质,双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:利用条件确定几何量a,b,c,即可求出椭圆、双曲线的标准方程.
解答: 解:(1)∵a+c=20,a-c=4,
∴a=12,c=8,
∴b=
a2-c2
=4
5

∵椭圆的焦点在y轴,
∴椭圆的标准方程为
y2
144
+
x2
80
=1

(2)∵焦距是8,离心率e=2,
∴c=4,a=2,
∴b=
c2-a2
=2
3

∵双曲线的焦点在x轴,
∴双曲线的标准方程为
x2
4
-
y2
12
=1
点评:本题考查椭圆、双曲线的标准方程与性质,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,矩形ABCD的对角线AC,BD交于点O,AB=4,AD=3,沿AC把△ACD折起,使二面角D1-AC-B为直二面角,求二面角D1-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正项等比数列{an}中,lga3+lga6+lga9=6,则a5•a7的值是(  )
A、10000B、1000
C、100D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C为其内角,若
1
tanA
1
tanB
1
tanC
依次成等差数列,则角B的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆C1:(x+4)2+y2=4与x轴相交于A,B两点,点P为圆C1上不同于点A,B的任意一点,直线PA,PB分别交y轴于S,T两点,当点P变化时,以ST为直径的圆C2是否经过圆C1内一定点,请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线E:
x2
m
+
y2
m-1
=1,
(1)若曲线E为双曲线,求实数m的取值范围;
(2)已知m=4,A(-1,0)和曲线C:(x-1)2+y2=16,点P是曲线C上任意一点,线段PA的垂直平分线为l,试判断l与曲线E的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
3
x3-
3
2
x2
+(a+1)x+1,其中a为实数.
(1)已知函数f(x)在x=1处取得极值,求a的值;
(2)已知不等式f′(x)>x2-x-a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

将一颗质地均匀的骰子连续抛掷三次,依次得到的三个点数成等差数列的概率为(  )
A、
1
12
B、
1
6
C、
1
4
D、
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

判断三角函数的奇偶性.
(1)f(x)=sin(
3x
4
+
2
);
(2)f(x)=lg
sinx+cosx
sinx-cosx

(3)f(x)=
1+sinx-cosx
1+sinx+cosx

查看答案和解析>>

同步练习册答案