精英家教网 > 高中数学 > 题目详情
5.求函数f(x)=$\sqrt{21+4x-{x}^{2}}-\frac{lo{g}_{5}(1-x)}{x+1}$的定义域.

分析 根据二次个数的性质结合对数函数的性质得到关于x的不等式组,解出即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{21+4x{-x}^{2}≥0}\\{1-x>0}\\{x+1≠0}\end{array}\right.$,
解得:-3≤x<1且x≠-1,
故函数的定义域是[-3,-1)∪(-1,1).

点评 本题考查了求函数的定义域问题,考查对数函数、二次个数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.△ABC中,a,b,c分别是角A,B,C的对边,且sinA+cosA=$\frac{\sqrt{3}-1}{2}$,a=7,3sinB=5sinC,则b+c的值为(  )
A.12B.8$\sqrt{3}$C.8$\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$\frac{cos(180°+α)sin(α+360°)sin(540°+α)}{sin(-α-180°)cos(-180°-α)}$=lg$\frac{1}{\root{3}{10}}$,求$\frac{cos(π+α)}{cosα[cos(π-α)-1]}$+$\frac{cos(α-2π)}{cosαcos(π-α)+cos(α-2π)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2sin(3x-$\frac{π}{6}$).
(1)求f(0)、f($\frac{2π}{9}$);
(2)分别指出函数f(x)的振幅、相位、初相位的值,并求出其最小正周期;
(3)求函数f(x)的递增区间和递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设区域G为圆C1:x2+y2=$\frac{1}{2}$的外部与圆C2:x2+y2=2的内部的公共部分,点P(x,y)在G中运动,求点Q(x+y,x-y)的轨迹方程,并作出它的图形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=logsinβ(x2+ax+3)在区间(-∞,1)上递增,则实数a的取值范围是(  )
A.(-4,-2]B.[-4,-2]C.(-4,+∞)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2sin(ωx+$\frac{π}{3}$)+cos(ωx-$\frac{π}{6}$)(ω>0)的最小正周期为π.
(1)求函数f(x)的单调递减区间,其图象对称轴的方程和对称中心的坐标;
(2)作出该函数在一个周期内的简图;
(3)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.△ABC中,已知a=$\sqrt{2}$,c=3,B=45°,则b=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求证:x∈R时,|x-1|≤4|x3-1|.

查看答案和解析>>

同步练习册答案