精英家教网 > 高中数学 > 题目详情

【题目】已知函数,,设

(1)如果曲线与曲线处的切线平行,求实数的值;

(2)若对,都有成立,求实数的取值范围;

(3)已知存在极大值与极小值,请比较的极大值与极小值的大小,并说明理由.

【答案】(1);(2);(3) 当时,极大值大于极小值;

时,极大值小于极小值.

【解析】

(1)分别求出两个函数的导数,代入两个导函数中,根据线线平行斜率的关系,可以求出实数的值;

(2)对函数求导,分类讨论函数的单调性,最后求出实数的取值范围;

(3)的导函数等于零,求题意确定实数的取值范围,分类讨论,根据函数的单调性确定极大值与极小值之间的大小关系即可.

(1)因为,,

所以,,

,得

(2),

易知,

①当,即时,有,

所以上是增函数,

所以,满足题意.

②当,即时,

,得,

因为,,

所以上是减函数,

,不符合题意.

综上,.

(3),

有两个不相等实数根,

因为,

所以,

①当时,即时,

上是增函数,在上是减函数,在上是增函数,

极大值为,极小值为,且.

②当时,即时,

上是增函数,在上是减函数,在上是减函数,在上是增函数,

极大值为,极小值为.

,

因为,,,

所以.

综上,当时,极大值大于极小值;

时,极大值小于极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校举行运动会,其中三级跳远的成绩在8.0米 (四舍五入,精确到0.1米) 以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30 ,第6小组的频数是7 .

(Ⅰ)求进入决赛的人数;

(Ⅱ)若从该校学生(人数很多)中随机抽取两名,记表示两人中进入决赛的人数,求的分布列及数学期望;

(Ⅲ) 经过多次测试后发现,甲成绩均匀分布在8~10米之间,乙成绩均匀分布在9.5~10.5米之间,现甲,乙各跳一次,求甲比乙远的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前项和为,且.

1)求数列的通项公式;

2)若,数列的前项和为,求的取值范围;

3)若,从数列中抽出部分项(奇数项与偶数项均不少于两项),将抽出的项按照某一顺序排列后构成等差数列.当等差数列的项数最大时,求所有满足条件的等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论上的单调性.

2)当时,若上的最大值为,证明:函数内有且仅有2个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M: 及其上一点A24

1)设圆Nx轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;

2)设平行于OA的直线l与圆M相交于BC两点,且BC=OA,求直线l的方程;

3)设点Tt,o)满足:存在圆M上的两点PQ,使得,求实数t的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张军自主创业,在网上经营一家干果店,销售的干果中有松子、开心果、腰果、核桃,价格依次为120/千克、80/千克、70/千克、40元千克,为增加销量,张军对这四种干果进行促销:一次购买干果的总价达到150元,顾客就少付x(2xZ).每笔订单顾客网上支付成功后,张军会得到支付款的80%.

①若顾客一次购买松子和腰果各1千克,需要支付180元,则x=________

②在促销活动中,为保证张军每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为且满足:

(1)证明:是等比数列,并求数列的通项公式.

(2)设,若数列是等差数列,求实数的值;

(3)在(2)的条件下,设 记数列的前项和为,若对任意的存在实数,使得,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,则为异面直线; ②若,则

③若,则 ④若,则.

则上述命题中真命题的序号为(

A.①②B.③④C.D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥为等边三角形,平面平面中点.

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案