精英家教网 > 高中数学 > 题目详情

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.

(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?

优秀

合格

合计

大学组

中学组

合计

注:,其中.

0.10

0.05

0.005

2.706

3.841

7.879

(2)若参赛选手共6万人,用频率估计概率,试估计其中优秀等级的选手人数.

(3)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6.在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为,在选出的6名良好等级的选手中任取一名,记其编号为,求使得方程组有唯一一组实数解的概率.

【答案】(1)见解析;(2)4.5;(3)

【解析】试题分析:(1)由条形图可知列联表,利用公式求得的观测值,即可作出预测结果;

(2)由条形图知,所抽取的人中优秀等级有人,得到优秀率,用频率估计概率,得参赛选手中优秀等级的概率,即可求解所有参赛选手中优秀等级的选手人数;

(3)利用古典概型及其概率的计算公式,即可求解相应的概率.

试题解析:

(1)由条形图可知列联表如下:

优秀

合格

合计

大学组

45

10

55

中学组

30

15

45

合计

75

25

100

的观测值

∴没有95%的把握认为选物成绩“优秀”与文化程度有关.

(2)由条形图知,所抽取的100人中优秀等级有75人,故优秀率为,用频率估计概率,则参赛选手中优秀等级的概率是,∴所有参赛选手中优秀等级的选手人数约为(万).

(3)从1,2,3,4,5,6中取,从1,2,3,4,5,6中取,共有36种组合,要使方程组有唯一一组实数解,则,共33种组合,故所求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求证:函数是偶函数;

(2)求函数上的最大值和最小值;

(3)若对于任意的实数恒有求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)若曲线在点处的切线垂直于轴,求实数的值;

(2)当时,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若恒成立,试确定实数的取值范围;

(3)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),五边形中, .如图(2),将沿折到的位置,得到四棱锥.点为线段的中点,且平面

(1)求证:平面平面

(2)若直线所成角的正切值为,设,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018四川南充市高三第二次(3月)高考适应性考试已知椭圆的离心率为,点在椭圆上.

I)求椭圆的方程;

II)直线平行于为坐标原点),且与椭圆交于两个不同的点,若为钝角,求直线轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)求曲线的普通方程和直线的倾斜角;

2)设点,直线和曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若存在,使成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国政府实施“互联网+”战略以来,手机作为客户端越来越为人们所青睐,通过手机实现衣食住行消费已经成为一种主要的消费方式,“一机在手,走遍天下”的时代已经到来。在某著名的夜市,随机调查了100名顾客购物时使用手机支付的情况,得到如下的列联表,已知其中从使用手机支付的人群中随机抽取1人,抽到青年的概率为.

(1)根据已知条件完成列联表,并根据此资料判断是否有的把握认为“市场购物用手机支付与年龄有关”?

(2)现采用分层抽样从这100名顾客中按照“使用手机支付”和“不使用手机支付”中抽取得到一个容量为5的样本,设事件为“从这个样本中任选2人,这2人中至少有1人是不使用手机支付的”,求事件发生的概率?

列联表

青年

中老年

合计

使用手机支付

60

不使用手机支付

24

合计

100

附:

查看答案和解析>>

同步练习册答案