精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)若函数有两个零点,求的取值范围;

(Ⅱ)证明:当时,关于的不等式上恒成立.

【答案】(1)(2)

【解析】试题分析:(Ⅰ)由题意,可利用导数法来进行求解,由,转换为,即将问题转化为曲线与直线有两交点,求的取值范围,构造函数,求函数的单调区间,再求函数的最值,从而问题可得解;

(Ⅱ)由题意,将问题转化为:当时,不等式上恒成立,可构造函数,并证明其最大值在区间上成立即可.

试题解析:(Ⅰ)令,∴

,∴

,解得,令,解得

则函数上单调递增,在上单调递减,∴.

要使函数有两个零点,则函数的图象与有两个不同的交点,

,即实数的取值范围为.

(Ⅱ)∵,∴.

,∴

,∴,则上单调递增,

,使得,即,∴.

时, ;当时,

∴函数上单调递增,在上单调递减,

.

,∴

时, 恒成立,则上单调递增,

,即当时,

∴当时,关于的不等式上恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量(单位:千克)与施用肥料(单位:千克)满足如下关系:,肥料成本投入为元,其它成本投入(如培育管理、施肥等人工费)元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为(单位:元).

(Ⅰ)求的函数关系式;

(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线.

1)求证:对直线与圆总有两个不同的交点;

2)是否存在实数,使得圆上有四个点到直线的距离为?若存在,求出的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周脾算经》有记载:一年有二十四个节气,每个节气晷(gui)长损益相同,晷是按照日影测定时刻的仪器,晷长即所测定的影子的长度,二十四节气及晷长变化如图所示,相邻两个节气晷长变化量相同,周而复始,若冬至晷长最长是一丈三尺五寸,夏至晷长最短是一尺五寸,(一丈等于10尺,一尺等于10寸),则秋分节气的晷长是(

A.七尺五寸B.二尺五寸C.五尺五寸D.四尺五寸

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列为等差数列,,数列的前项和为,且有.

1)求的通项公式;

2)若,求使成立的的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱的底面是正三角形,侧面为菱形,且,平面平面分别是的中点.

1)求证:平面

2)求证:

3)求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,直线l过点

若直线l被圆所截得的弦长为,求直线l的方程;

若圆P是以为直径的圆,求圆P与圆的公共弦所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆轴相切于点(0,3),圆心在经过点(2,1)与点(﹣2,﹣3)的直线上.

(1)求圆的方程;

(2)圆与圆相交于M、N两点,求两圆的公共弦MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为发挥体育在核心素养时代的独特育人价值,越来越多的中学已将某些体育项目纳入到学生的必修课程,甚至关系到是否能拿到毕业证.某中学计划在高一年级开设游泳课程,为了解学生对游泳的兴趣,某数学研究性学习小组随机从该校高一年级学生中抽取了100人进行调查,其中男生60人,且抽取的男生中对游泳有兴趣的占,而抽取的女生中有15人表示对游泳没有兴趣.

(1)试完成下面的列联表,并判断能否有的把握认为“对游泳是否有兴趣与性别有关”?

有兴趣

没兴趣

合计

男生

女生

合计

(2)已知在被抽取的女生中有6名高一(1)班的学生,其中3名对游泳有兴趣,现在从这6名学生中随机抽取3人,求至少有2人对游泳有兴趣的概率.

(3)该研究性学习小组在调查中发现,对游泳有兴趣的学生中有部分曾在市级和市级以上游泳比赛中获奖,如下表所示.若从高一(8)班和高一(9)班获奖学生中各随机选取2人进行跟踪调查,记选中的4人中市级以上游泳比赛获奖的人数为,求随机变量的分布列及数学期望.

班级

市级比赛

获奖人数

2

2

3

3

4

4

3

3

4

2

市级以上比赛获奖人数

2

2

1

0

2

3

3

2

1

2

0.500

0.400

0.250

0.150

0.100

0.050

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

同步练习册答案