精英家教网 > 高中数学 > 题目详情
已知圆O的方程为 x2+y2=100,点A的坐标为(-6,0),M为圆O上任一点,AM的垂直平分线交OM于点P,求点P的方程.
分析:利用平面几何中的垂直平分线知识,建立线段和PA+PO为定值的关系,确定交点的轨迹方程.
解答:解:由中垂线知,
PA=PM故PA+PO=PM+PO=OM=10,
即P点的轨迹为以A、O为焦点的椭圆,
中心为(-3,0),
故P点的方程为
(x+3)2
25
+
y2
16
=1
点评:定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆O的方程为x2+y2=1,直线l1过点A(3,0),且与圆O相切.
(1)求直线l1的方程;
(2)设圆O与x轴相交于P,Q两点,M是圆O上异于P,Q的任意一点,过点A且与x轴垂直的直线为l2,直线PM交直线l2于点P′,直线QM交直线l2于点Q′.求证:以P′Q′为直径的圆C总经过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O的方程为x2+y2=2,圆M的方程为(x-1)2+(y-3)2=1,过圆M上任一点P作圆O的切线PA,若直线PA与圆M的另一个交点为Q,则当弦PQ的长度最大时,直线PA的斜率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O的方程为:x2+y2=1.
Ⅰ、设过圆O上的一点P(-
3
5
4
5
)
作圆O的切线l,求切线l方程;
Ⅱ、设圆A:(x-2)2+y2=3与圆O相交于B,C两点,求四边形ABOC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O的方程为x2+y2=1和点A(a,0),设圆O与x轴交于P、Q两点,M是圆OO上异于P、Q的任意一点,过点A(a,0)且与x轴垂直的直线为l,直线PM交直线l于点E,直线QM交直线l于点F.
(1)若a=3,直线l1过点A(3,0),且与圆O相切,求直线l1的方程;
(2)证明:若a=3,则以EF为直径的圆C总过定点,并求出定点坐标;
(3)若以EF为直径的圆C过定点,探求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O的方程为x2+y2=4,P是圆O上的一个动点,若线段OP的垂直平分线总是被平面区域|x|+|y|≥a覆盖,则实数a的取值范围是(  )

查看答案和解析>>

同步练习册答案