精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱中,,点的中点。

(1)求证:∥平面
(2)如果点的中点,求证:平面平面.

(1)详见解析;(2)详见解析

解析试题分析:(1)证明A1B∥平面ADC1,利用线面平行的判定,只需证明A1B∥OD即可
(2)证明平面A1BE⊥平面BCC1B1,利用面面垂直的判定,证明A1E⊥平面BCC1B1即可.
试题解析:连接A1C交AC1与点O,连结OD。
在△A1BC中A1B∥OD。又OD在面ADC1内,A1B不在面ADC1内,所以A1B∥平面ADC1
直三棱柱ABC-A1B1C1中,C1C⊥平面ABC,
∴C1C⊥AD,又在△ABC中AD⊥BC,
∴AD⊥平面BCC1B1,连接DE,∵E点是B1C1的中点,∴在直三棱柱ABC-A1B1C1中,四边形B1BDE为平行四边形,∴B1B∥ED,B1B=ED,又B1B∥A1A,B1B=A1A,∴ED∥A1A,∴四边形A1ADE为平行四边形,
∴A1E∥AD,于是A1E垂直平面BCC1B1,又A1E在面A1BE内,所以平面A1BE⊥平面BCC1B1
考点:空间线面位置关系的证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图①,E、F分别是直角三角形ABC边AB和AC的中点,∠B=90°,沿EF将三角形ABC折成如图②所示的锐二面角A1EFB,若M为线段A1C中点.求证:

(1)直线FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,棱柱中,四边形是菱形,四边形是矩形,.

(1)求证:平面
(2)求点到平面的距离;
(3)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABCA1B1C1的侧棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中点,FAB的中点,ACBC=1,AA1=2.

(1)求证:CF∥平面AB1E
(2)求三棱锥CAB1E在底面AB1E上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.

(1)求证:平面AEC⊥平面ABE;
(2)点F在BE上.若DE∥平面ACF,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,,平面外一条线段AB满足AB∥DE,AB,AB⊥AC,F是CD的中点.

(1)求证:AF∥平面BCE
(2)若AC=AD,证明:AF⊥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱柱ABC ­A1B1C1中,AA1⊥BC,∠A1AC=60°,AA1=AC=BC=1,A1B=.

(1)求证:平面A1BC⊥平面ACC1A1
(2)如果D为AB的中点,求证:BC1∥平面A1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面为梯形,,平面平面

(1)求证:平面
(2)求证:
(3)是否存在点,到四棱锥各顶点的距离都相等?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知在四棱锥中, 底面四边形是直角梯形, ,,.

(1)求证:
(2)求直线与底面所成角的正切值.

查看答案和解析>>

同步练习册答案