精英家教网 > 高中数学 > 题目详情

【题目】已知圆和直线l:

(1)证明:不论取何值时,直线和圆总有两个不同的交点;

(2)求当取何值时,直线被圆截得的弦最短,并求最短的弦长.

【答案】(1)见解析;(2)时有最短弦长为.

【解析】

1根据直线l方程可知直线l恒过定点,求出距离小于半径,知定点M在圆内,即可得直线l与圆C必相交;2当直线直线MC时,直线l被圆C截得的弦长最短,求直线MC的斜率,得直线l斜率,利用垂径定理,勾股定理求出最短弦长即可.

1证明:根据题意得:直线

恒过点

圆心,半径为4,

在圆内,则直线l与圆C必相交;

2当直线直线MC时,直线l被圆C截得的弦长最短,

,则直线MC的方程为:,即

直线l斜率为2,直线l过点M

直线l方程为,即

根据题意得:最短弦长为

时有最短弦长为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是菱形,是矩形,平面平面的中点.

(1)求证:

(2)在线段上是否存在点,使二面角的大小为,若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点也为抛物线的焦点.(1)若为椭圆上两点,且线段的中点为,求直线的斜率;

(2)若过椭圆的右焦点作两条互相垂直的直线分别交椭圆于,设线段的长分别为,证明是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:
(1)取到的2只都是次品;
(2)取到的2只中正品、次品各一只;
(3)取到的2只中至少有一只正品.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为,(为参数),圆的标准方程为.以坐标原点为极点, 轴正半轴为极轴建立极坐标系.

(1)求直线和圆的极坐标方程;

(2)若射线与的交点为,与圆的交点为,且点恰好为线段的中点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(2x+φ)(|φ|<π)的图象向左平移 个单位后关于原点对称,则函数f(x)在[0, ]上的最小值为(
A.﹣
B.﹣
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出结论:x+ ≥n+1(n∈N*),则a=(
A.2n
B.3n
C.n2
D.nn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在外接圆直径为1的△ABC中,角A,B,C的对边分别为a,b,c,设向量 =(a,cosB), =(b,cosA),且
(1)求sinA+sinB的取值范围;
(2)若abx=a+b,试确定实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系中,曲线的参数方程为为参数);在极坐标系(与直角坐标系取相同的单位长度,且以原点为极点,以轴正半轴为极轴)中,直线的方程为.

(1)求曲线的普通方程和直线的直角坐标方程;

(2)求直线被曲线截得的弦长.

查看答案和解析>>

同步练习册答案