【题目】已知函数f(x)=|x+a|+|x﹣3|(a∈R).
(Ⅰ)当a=1时,求不等式f(x)≥x+8的解集;
(Ⅱ)若函数f(x)的最小值为5,求a的值.
【答案】解:(Ⅰ)当a=1时,求不等式f(x)≥x+8,即|x+1|+|x﹣3|≥x+8, 若x<﹣1,则有﹣x﹣1+3﹣x≥x+8,求得x≤﹣2.
若﹣1≤x≤3,则有x+1+3﹣x≥x+8,求得x≤﹣4,不满足要求.
若x>3,则有x+1+x﹣3≥x+8,求得x≥10.
综上可得,x的范围是{x|x≤﹣2或x≥10}.
(Ⅱ)∵f(x)=|x+a|+|x﹣3|=|x+a|+|3﹣x|≥|x+a+3﹣x|=|a+3|,
∴函数f(x)的最小值为|a+3|=5,∴a+3=5,或a+3=﹣5,
解得a=2,或a=﹣8.
【解析】(Ⅰ)当a=1时,不等式即|x+1|+|x﹣3|≥x+8,分类讨论去掉绝对值,分别求得它的解集,再取并集,即得所求.(Ⅱ)由条件利用绝对值三角不等式求得f(x)的最小值,再根据f(x)的最小值为5,求得a的值.
科目:高中数学 来源: 题型:
【题目】如果P1 , P2 , …,Pn是抛物线C:y2=8x上的点,它们的横坐标依次为x1 , x2 , …,xn , F是抛物线C的焦点,若x1+x2+…+xn=8,则|P1F|+|P2F|+…+|PnF|=( )
A.n+10
B.n+8
C.2n+10
D.2n+8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设α,β是两个不同的平面,l是直线且lα,则“α∥β”是“l∥β”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若φ(x),g(x)都是奇函数,f(x)=aφ(x)+bg(x)+2在(0,+∞)上存在最大值5,则f(x)在(﹣∞,0)上存在( )
A.最小值﹣5
B.最大值﹣5
C.最小值﹣1
D.最大值﹣3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题“若x>0,则x2>0”的否命题是( )
A.若x>0,则x2≤0
B.若x2>0,则x>0
C.若x≤0,则x2≤0
D.若x2≤0,则x≤0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com