精英家教网 > 高中数学 > 题目详情
某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:
月平均气温x(℃)171382
月销售量y(件)24334055
由表中数据算出线性回归方程
?
y
=bx+a
中的b≈-2.气象部门预测下个月的平均气温约为6℃,据此估计,该商场下个月毛衣的销售量约为
 
件.
(参考公式:b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,a=
.
y
-b
.
x
考点:线性回归方程
专题:计算题,概率与统计
分析:根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出a的值,可得线性回归方程,根据所给的x的值,代入线性回归方程,预报要销售的件数.
解答: 解:由表格得(
.
x
.
y
)为:(10,38),
又(
.
x
.
y
)在回归方程y=bx+a中的b=-2,
∴38=10×(-2)+a,
解得:a=58,
∴y=-2x+58,
当x=6时,y=-2×6+58=46.
故答案为:46.
点评:本题考查线性回归方程,考查最小二乘法的应用,考查利用线性回归方程预报变量的值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

知函数f(x)=
(x-a)2(x≤0)
1
x
+x+a(x>0)
的最小值为f(0),则a的取值范围是(  )
A、[-1,2]
B、[0,2]
C、[1,2]
D、[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元).确定x=
 
,使修建此矩形场地围墙的总费用最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:ρ=4sinθ与直线
x=3t
y=2-4t
(t为参数)交于A,B两点,则|AB|=(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,最小正周期为2π的是(  )
A、y=cosx
B、y=sin(2x+π)
C、y=tanx
D、y=|sinx|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
为单位向量,且夹角为
3
,则向量2
a
+
b
a
的夹角大小是(  )
A、
3
B、
π
2
C、
π
3
D、
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(x2+x-a).
(1)若f(x)的定义域为(-∞,-3)∪(2,+∞),求实数a的值;
(2)若函数g(x)=f(x)+log
1
2
x的定义域是(0,+∞),值域为[1,+∞),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了了解某地区10000名高三男生的身体发育情况,抽查了该地区100名年龄为17~18岁的高三男生体重(kg),得到频率分布直方图如图.根据图示,请你估计该地区高三男生中体重在[56.5,64.5]kg的学生人数是(  )
A、40
B、400
C、4 000
D、4 400

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a2=76,an+1=an+4n,则数列{
an
n
}
的最小项是第
 
项.

查看答案和解析>>

同步练习册答案