分析 作另一焦点F′,连接AF′和BF′和CF′,则四边形FAF′C为平行四边形,进一步得到三角形ABF′为等腰直角三角形,设AF′=AB=x,求出x,在三角形AFF′中由勾股定理得(AF′)2+(AF)2=(2c)2,即可求出e2,则答案可求.
解答 解:作另一焦点F′,连接AF′和BF′和CF′,则四边形FAF′C为平行四边形,
∴AF′=CF=AB,且AF′⊥AB,则三角形ABF′为等腰直角三角形,
设AF′=AB=x,则$x+x+\sqrt{2}x=4a$,即$x=(4-2\sqrt{2})a$,
∴$AF=(2\sqrt{2}-2)a$,在三角形AFF′中由勾股定理得(AF′)2+(AF)2=(2c)2,
∴${e}^{2}=9-6\sqrt{2}$.则e=$\sqrt{6}-\sqrt{3}$.
故答案为:$\sqrt{6}-\sqrt{3}$.
点评 本题考查了椭圆的简单性质,考查了勾股定理在解题中的应用,是中档题.
科目:高中数学 来源: 题型:解答题
单位 | A1 | A2 | A3 | A4 | A5 |
平均身高x(单位:cm) | 170 | 174 | 176 | 181 | 179 |
平均得分y | 62 | 64 | 66 | 70 | 68 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com