【题目】在平面直角坐标系xOy中,A的坐标为(2,0),B是第一象限内的一点,以C为圆心的圆经过OAB三点,且圆C在点A,B处的切线相交于P,若P的坐标为(4,2),则直线PB的方程为_____.
【答案】x+7y﹣18=0.
【解析】
先求出圆C(1,1),半径r=|AC|, 设PB的方程为y﹣2=k(x﹣4),由题得,解方程即得解.
根据题意,A的坐标为(2,0),以C为圆心的圆经过OAB三点,
则圆心C在线段OA的垂直平分线上,
设圆心C的坐标为(1,b),
圆C在点A,B处的切线相交于P,若P的坐标为(4,2),则kPA1,则kAC1,
解可得:b=1,即C(1,1),圆C的半径r=|AC|,
其圆C的方程为(x﹣1)2+(y﹣1)2=2,直线PB的斜率必定存在,
设PB的方程为y﹣2=k(x﹣4),即kx﹣y﹣4k+2=0,
则有,解可得k或1(舍);
故PB的方程为y﹣2(x﹣4),变形可得x+7y﹣18=0;
故答案为:x+7y﹣18=0.
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)选修4—4,坐标系与参数方程
已知曲线,直线:(为参数).
(I)写出曲线的参数方程,直线的普通方程;
(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】因客流量临时增大,某鞋店拟用一个高为50(即)的平面镜自制一个竖直摆放的简易鞋镜,根据经验:一般顾客的眼睛到地面的距离为()在区间内,设支架高为(),,顾客可视的镜像范围为(如图所示),记的长度为().
(I)当时,试求关于的函数关系式和的最大值;
(II)当顾客的鞋在镜中的像满足不等关系(不计鞋长)时,称顾客可在镜中看到自己的鞋,若使一般顾客都能在镜中看到自己的鞋,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的参数方程为(为参数),P是曲线C上的点且对应的参数为,.直线l过点P且倾斜角为.
(1)求曲线C的普通方程和直线l的参数方程.
(2)已知直线l与x轴,y轴分别交于,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列{an}满足:对任意n∈N*,均有an=bn+cn成立,且{bn},{cn}都是等比数列,则称(bn,cn)是数列{an}的一个等比拆分.
(1)若an=2n,且(bn,bn+1)是数列{an}的一个等比拆分,求{bn}的通项公式;
(2)设(bn,cn)是数列{an}的一个等比拆分,且记{bn},{cn}的公比分别为q1,q2;
①若{an}是公比为q的等比数列,求证:q1=q2=q;
②若a1=1,a2=2,q1q2=﹣1,且对任意n∈N*,an+13<anan+1an+2+an+2﹣an恒成立,求a3的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程是.
(1)写出曲线的普通方程和的直角坐标方程;
(2)求上的点到距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中曲线的参数方程为(为参数),以为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(1)求曲线的普通方程以及直线的直角坐标方程;
(2)将曲线向左平移2个单位,再将曲线上的所有点的横坐标缩短为原来的,得到曲线,求曲线上的点到直线的距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com