精英家教网 > 高中数学 > 题目详情
19.方程(1+λ)x+(2λ-1)y+(1-8λ)=0(λ∈R)过某定点,此定点的坐标是(2,3).

分析 原方程可化为(x+2y-8)λ+x-y+1=0,解方程组$\left\{\begin{array}{l}{x+2y-8=0}\\{x-y+1=0}\end{array}\right.$可得.

解答 解:原方程可化为(x+2y-8)λ+x-y+1=0,
联立$\left\{\begin{array}{l}{x+2y-8=0}\\{x-y+1=0}\end{array}\right.$可解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,
∴直线过定点(2,3),
故答案为:(2,3).

点评 本题考查直线恒过定点问题,涉及方程组的解法,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.某中学高三(1)班的一次数学单元测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.

(1)求全班人数;
(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;
(3)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知关于x的不等式$\sqrt{x}$+$\sqrt{2-x}$≥k有实数解,则实数k的取值范围是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知tanα=7,求下列各式的值:
(1)$\frac{sinα+cosα}{2sinα-cosα}$
(2)sin2α+sinαcosα+3cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知-6π<α<-4π,且角α与角$\frac{2π}{3}$的终边相同,求α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设某企业每月生产电机x台,根据企业月度报表知,每月总产值m(万元)与总支出n(万元)近似地满足下列关系:m=$\frac{9}{2}$x-$\frac{1}{4}$,n=-$\frac{1}{4}$x2+5x+$\frac{7}{4}$,当m-n≥0时,称不亏损企业;当m-n<0时,称亏损企业,且n-m为亏损额.
(1)企业要成为不亏损企业,每月至少要生产多少台电机?
(2)当月总产值为多少时,企业亏损最严重,最大亏损额为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,a,b,c分别是内角A,B,C的对边,已知△ABC的面积S=$\frac{3\sqrt{3}}{4}$,c=$\sqrt{7}$,sin2A+sin2B-sin2C-sinAsinB=0.
(1)求角C;
(2)求a+b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知△ABC的内角A,B,C的对边分别为a,b,c,且$\frac{b-c}{a+c}$=$\frac{sinA}{sinB+sinC}$,则B=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.生产一种机器的固定收入为每年5万元,每生产1百台,需另增加投入6万元,已知客户群对比产品的年需求量不低于1百台而不超过5百台,年销售收入函数为R(x)=11x+$\frac{20}{x}$(1≤x≤5)(单位:万元),其中x是产品的年销售量(单位:百台),且每年生产的产品全部售出.
(1)把年利润y表示为年销售量x的函数;
(2)当年销售量是多少时,工厂所得的年利润最低?最低是多少?

查看答案和解析>>

同步练习册答案