精英家教网 > 高中数学 > 题目详情
(2012•惠州模拟)(几何证明选讲选做题)已知PA是圆O的切线,切点为A,PA=2,AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R的长为
3
3
分析:先证明△PAB∽△PCA,再利用相似比建立方程,即可求得结论.
解答:解:连接AB,
∵PA是圆O的切线,∴∠PAB=∠C
∵∠APB=∠CPA
∴△PAB∽△PCA
PA
AC
=
PB
AB

∴2R=AC=
PA×AB
PB
=2
3

∴R=
3

故答案为:
3
点评:本题考查圆的切线的性质,考查三角形的相似,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•惠州模拟)已知实数4,m,9构成一个等比数列,则圆锥曲线
x2
m
+y2=1
的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)已知椭圆C:  
x2
a2
+
y2
b2
=1  (a>b>0)
的离心率为
6
3
,且经过点(
3
2
1
2
)

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(0,2)的直线交椭圆C于A,B两点,求△AOB(O为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求平面BCE与平面ACD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=2,E是PD的中点.
(1)求证:平面PDC⊥平面PAD;
(2)求二面角E-AC-D所成平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)计算:
1
-1
1-x2
dx
=
π
2
π
2

查看答案和解析>>

同步练习册答案