精英家教网 > 高中数学 > 题目详情

【题目】已知棱长为l的正方体中,E,F,M分别是AB、AD、的中点,又P、Q分别在线段上,且,设面面MPQ=,则下列结论中不成立的是( )

A面ABCD

BAC

C面MEF与面MPQ不垂直

D当x变化时,不是定直线

【答案】D

【解析】

试题分析:解:连结,交于点交于点

由正方体的性质知,

因为的中点,所以

因为,所以

所以,所以平面,平面,

面MPQ= 平面,所以,而平面,平面,

所以,面ABCD ,所以选项A正确;

,所以AC,所以选项B正确;

,则

所以,,所以平面,过直线与平面垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;

因为是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线是唯一的,故选项D不正确

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点,焦点在轴上的椭圆,离心率为且过点,过定点的动直线与该椭圆相交于两点.

(1)若线段中点的横坐标是,求直线的方程;

(2)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们知道,如果集合AS,那么S的子集A的补集为SA={x|xS,且xA}.类似地,对于集合AB,我们把集合{x|xA,且xB}叫作集合AB的差集,记作AB.据此回答下列问题:

(1)若A={1,2,3,4},B={3,4,5,6},求AB

(2)在下列各图中用阴影表示集合AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x-1|+|x-2a|.

(1)当a=1时,求f(x)≤3的解集;

(2)当x∈[1,2]时,f(x)≤3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业拟生产一种如图所示的圆柱形易拉罐(上下底面及侧面的厚度不计).易拉罐的体积为 ,设圆柱的高度为 ,底面半径为 ,且.假设该易拉罐的制造费用仅与其表面积有关.已知易拉罐侧面制造费用为元/ ,易拉罐上下底面的制造费用均为元/ 为常数,且).

(1)写出易拉罐的制造费用(元)关于的函数表达式,并求其定义域;

(2)求易拉罐制造费用最低时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数(mZ)为偶函数,且在区间(0,+∞)上是单调增函数.

(1)求函数f(x)的解析式;

(2)设函数,若g(x)>2对任意的xR恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+a2.

(I)若f(x)在x=1处有极值10,求a,b的值;

(II)若当a=-1时,f(x)<0在x∈[1,2]恒成立,求b的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a是实数,函数f(x)= (x-a).

(1)求函数f(x)的单调区间;

(2)设g(a)为f(x)在区间[0,2]上的最小值.

①写出g(a)的表达式;

②求a的取值范围,使得-6≤g(a)≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有2个红球,4个白球,除颜色外,它们的形状、大小、质量等完全相同

(1)采用不放回抽样,先后取两次,每次随机取一个球,求恰好取到1个红球,七个白球的概率;

(2)采用放回抽样,每次随机抽取一球,连续取3次,求至少有1次取到红球的概率.

查看答案和解析>>

同步练习册答案