精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x﹣lnx+a﹣1,g(x)= +ax﹣xlnx,其中a>0.
(1)求f(x)的单调区间;
(2)当x≥1时,g(x)的最小值大于 ﹣lna,求a的取值范围.

【答案】
(1)解:函数f(x)的定义域为(0,+∞).,

当0<x<1时,f'(x)<0;当x>1时,f'(x)>0.

∴函数f(x)的单调递减区间是(0,1),单调递增区间是(1,+∞)


(2)解:易知g'(x)=x﹣lnx+a﹣1=f(x).

由(1)知,f(x)≥f(1)=a>0,

所以当x≥1时,g'(x)≥g'(1)=a>0.

从而g(x)在[1,+∞)上单调递增,

所以g(x)的最小值

依题意得 ,即a+lna﹣1>0.

令h(a)=lna+a﹣1,易知h(a)在(0,+∞)上单调递增.

所以h(a)>h(1)=0,所以a的取值范围是(1,+∞)


【解析】(1)求出函数的导数,利用导数的符号求解函数的单调性.(2)利用g'(x)=x﹣lnx+a﹣1=f(x).结合(1)知,判断g(x)在[1,+∞)上单调递增,求出g(x)的最小值,推出a+lna﹣1>0,令h(a)=lna+a﹣1,利用h(a)在(0,+∞)上单调递增.求解a的范围.
【考点精析】通过灵活运用利用导数研究函数的单调性,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的上、下焦点分别为,上焦点到直线的距离为3,椭圆的离心率.

(1)求椭圆的方程;

(2)椭圆,设过点斜率存在且不为0的直线交椭圆两点,试问轴上是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中装有除颜色外其他均相同的编号为a,b的两个黑球和编号为c,d,e的三个红球,从中任意摸出两个球.

1)求恰好摸出1个黑球和1个红球的概率:

2)求至少摸出1个黑球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣2|﹣|x+1|.
(1)解不等式f(x)>1.
(2)当x>0时,函数g(x)= (a>0)的最小值总大于函数f(x),试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数,以原点为极点轴的正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程

(2)若点的极坐标为是曲线上的一动点,求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《张丘建算经》是公元5世纪中国古代内容丰富的数学著作,书中卷上第二十三问:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈.问日益几何?”其意思为“有个女子织布,每天比前一天多织相同量的布,第一天织五尺,一个月(按30天计)共织390尺.问:每天多织多少布?”已知1匹=4丈,1丈=10尺,估算出每天多织的布的布约有(
A.0.55尺
B.0.53尺
C.0.52尺
D.0.5尺

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查家庭的月收入与月储蓄的情况,某居民区的物业工作人员随机抽取该小区20个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,计算得:.

(1)求家庭的月储蓄对月收入的线性回归方程

(2)指出(1)中所求出方程的系数,并判断变量之间是正相关还是负相关;

(3)若该居民区某家庭月收入为9千元,预测该家庭的月储蓄.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥P﹣ABC中E,F分别是AC,PC的中点,若EF⊥BF,AB=2,则三棱锥P﹣ABC的外接球的表面积(
A.4π
B.6π
C.8π
D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形所在平面,为线段的中点, 为线段上一点,且

(1)求证: 平面

(2)若,求二面角的余弦值

查看答案和解析>>

同步练习册答案