精英家教网 > 高中数学 > 题目详情
已知双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的离心率为
2
,且过点(4,3).
(1)求双曲线C的标准方程和焦点坐标;
(2)已知点P在双曲线C上,且∠F1PF2=90°,求点P到x轴的距离.
分析:(1)通过离心率与点在双曲线上,得到两个方程,求出a,b,即可求双曲线C的标准方程和焦点坐标;
(2)利用点P在双曲线C上,且∠F1PF2=90°,勾股定理与双曲线的定义列出方程,利用三角形的面积,求点P到x轴的距离.
解答:解:(1)∵e2=
c2
a2
=1+
b2
a2
=2
∴a2=b2
∴双曲线C:
x2
a2
-
y2
a2
=1
…(2分)
将点(4,3)代入得a2=b2=1…(4分)
∴双曲线C的标准方程为x2-y2=1,焦点坐标为F1-
2
,0
)和F2
2
,0
)…(6分)
(2)由已知得
|F1P|2+|F2P|2=8
||F1P|-|F2P||=2
∴|F1P|•|F2P|=2…(9分)
所以点P到x轴的距离为
|F1P|•|F2P|
|F1F2|
=
2
2
2
=
2
2
.…(12分)
点评:本题考查双曲线方程的求法,双曲线的简单性质,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•许昌三模)已知双曲线c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距为c,过左焦点且斜率为1的直线与双曲线C的左、右支各有一个交点,若抛物线y2=4cx的准线被双曲线截得的线段长大于
2
2
3
be2.(e为双曲线c的离心率),则e的取值范同是
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•宁波模拟)已知双曲线
x2
a
-
y2
a2+a+1
=1
的离心率的范围是数集M,设p:“k∈M”; q:“函数f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域为R”.则P是Q成立的(  )

查看答案和解析>>

科目:高中数学 来源:宁波模拟 题型:单选题

已知双曲线
x2
a
-
y2
a2+a+1
=1
的离心率的范围是数集M,设p:“k∈M”; q:“函数f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域为R”.则P是Q成立的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距为c,过左焦点且斜率为1的直线与双曲线C的左、右支各有一个交点,若抛物线y2=4cx的准线被双曲线截得的线段长大于
2
2
3
be2.(e为双曲线c的离心率),则e的取值范同是______.

查看答案和解析>>

同步练习册答案