精英家教网 > 高中数学 > 题目详情

【题目】已知函数是定义域为R的奇函数.

1)求t的值;

2)判断R上的单调性,并用定义证明;

3)若函数上的最小值为-2,求k的值.

【答案】(1);(2)增函数,证明见解析;(3

【解析】

(1)是定义域为R的奇函数,利用求解得出t的值.

(2),再计算的正负进行单调性的判断即可.

(3)代入,进行换元,再利用二次函数的方法分析最值求参数即可.

(1)因为是定义域为R的奇函数,

所以,即,解得,

可知,经检验,符合题意.

(2) R上单调递增.

证明如下:设,则

.

因为,所以,

所以,,可得.

因为当时,有,

所以R单调递增.

(3)(1)可知,

,则,

因为是增函数,且,所以.

因为上的最小值为-2,

所以上的最小值为-2.

因为,

所以当时,,解得(舍去);

时,,不合题意,舍去.

综上可知,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】高二年级有男生490人,女生510人,张华按男生、女生进行分层,通过分层随机抽样的方法,得到男生、女生的平均身高分别为170.2cm160.8cm.

1)如果张华在各层中按比例分配样本,总样本量为100,那么在男生、女生中分别抽取了多少名?在这种情况下,请估计高二年级全体学生的平均身高.

2)如果张华从男生、女生中抽取的样本量分别为3070,那么在这种情况下,如何估计高二年级全体学生的平均身高更合理?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意,都存在,使得,其中为自然对数的底数,则实数的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数(简称:)是定量描述空气质量状况的无量纲指数,空气质量按照大小分为六级:为优,为良,为轻度污染,为中度污染,为重度污染,为严重污染.下面记录了北京市天的空气质量指数,根据图表,下列结论错误的是( )

A. 在北京这天的空气质量中,按平均数来考察,最后天的空气质量优于最前面天的空气质量 B. 在北京这天的空气质量中,有天达到污染程度

C. 在北京这天的空气质量中,12月29日空气质量最好 D. 在北京这天的空气质量中,达到空气质量优的天数有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),平面五边形中,为正三角形,.如图(2)将沿折起到的位置,使得平面平面.点为线段的中点.

(1)求证:平面

(2)若异面直线所成角的正切值为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC—A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分别是A1B,B1C1的中点.

(1)求证:MN//平面ACC1A1

(2)求点N到平面MBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的最小值;

(2)当时,求证方程在区间上有唯一实数根;

(3)当时,设函数两个不同的极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解中学生课余观看热门综艺节目“爸爸去哪儿”是否与性别有关,某中学一研究性学习小组从该校学生中随机抽取了人进行问卷调查.调查结果表明:女生中喜欢观看该节目的占女生总人数的男生喜欢看该节目的占男生总人数的.随后,该小组采用分层抽样的方法从这份问卷中继续抽取了份进行重点分析知道其中喜欢看该节目的有

(1) 现从重点分析的人中随机抽取了人进行现场调查求这两人都喜欢看该节目的概率

(2) 若有的把握认为“爱看该节目与性别有关”,则参与调查的总人数至少为多少

参考数据:

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的最小值;

(2)当时,求证方程在区间上有唯一实数根;

(3)当时,设函数两个不同的极值点,证明:.

查看答案和解析>>

同步练习册答案