精英家教网 > 高中数学 > 题目详情

【题目】在棱长为的正方体中,点分别为棱的中点,经过三点的平面为,平面被此正方体所截得截面图形的周长为( )

A.B.C.D.

【答案】B

【解析】

作出图形,分别取的中点,证明出六点共面,即可得出六边形为平面被正方体所截的截面图形,并证明出该六边形为正六边形,计算出其边长,即可得出截面图形的周长.

如下图所示,分别取的中点,连接.

在正方体中,,又分别为的中点,

所以,四边形为平行四边形,

分别为的中点,,且

,则四边形为梯形,则四点共面,

平面,易证,且平面平面

可得出平面,这与平面矛盾,则平面

同理可证平面,所以平面截正方体所得截面图形为六边形,易知该六边形的边长均为正方体的面对角线长度的一半,则其边长为,因此,该截面图形的周长为.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设等差数列的公差为项和为的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若关于的不等式的解集为,求实数的值;

2)设,若不等式都成立,求实数的取值范围;

3)若时,求函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面平面,且.

(Ⅰ)求证:

(Ⅱ)求直线AB与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司的营销部门对某件商品在网上销售情况进行调查,发现当这件商品每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过统计得到以下表:

1)经分析发现,可用线性回归模型拟合该商品销量(百件)与返还点数之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测若返回6个点时该商品每天销量;

2)该公司为了在购物节期间对所有商品价格进行新一轮调整,随机抽查了上一年购物节期间60名网友的网购金额情况,得到如下数据统计表:

网购金额

(单位:千元)

合计

频数

3

9

9

15

18

6

60

若网购金额超过2千元的顾客定义为“网购达人”,网购金额不超过2千元的顾客定义为“非网购达人”.该营销部门为了进步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定10人,若需从这10人中随机选取3人进行问卷调查.为选取的3人中“网购达人”的人数,求的分布列和数学期望.

参考公式及数据:①;②.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的直角坐标方程和直线的普通方程;

2)若直线与曲线交于两点,设,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆()的左、右焦点分别是,点的上顶点,点上,,且.

1)求的方程;

2)已知过原点的直线与椭圆交于两点,垂直于的直线且与椭圆交于两点,若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆,其长轴长是短轴长的倍,过焦点且垂直于轴的直线被椭圆截得的弦长为.

1)求椭圆的方程;

2)点是椭圆上横坐标大于的动点,点轴上,圆内切于,试判断点在何位置时的长度最小,并证明你的判断.

查看答案和解析>>

同步练习册答案