精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=ex+ln(x+1)的图象在(0,f(0))处的切线与直线x-ny+4=0垂直,则n的值为(  )
A.-2B.2C.1D.0

分析 由求导公式和法则求出函数的导数,由直线垂直的条件求出切线的斜率,即可求出n的值.

解答 解:依题意得,f′(x)=ex+$\frac{1}{x+1}$,所以f′(0)=2.
显然n≠0,直线x-ny+4=0的斜率为$\frac{1}{n}$,所以$\frac{1}{n}•2=-1$,解得n=-2,
故答案为:-2.
故选A.

点评 本题考查了求导公式和法则,由导数的几何意义求切线方程,以及直线垂直的条件等,熟练掌握公式是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)={({\frac{1}{3}})^x}-{x^2}$,若f(x0)=m,x1∈(0,x0),x2∈(x0,+∞),则(  )
A.f(x1)≥m,f(x2)<mB.f(x1)<m,f(x2)>mC.f(x1)<m,f(x2)<mD.f(x1)>m,f(x2)>m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列四个命题:
①命题“?x∈R,都有x2-x+1≥$\frac{3}{4}$”的否定是“?x∈R,使x2-x+1<$\frac{3}{4}$”
②命题“设向量$\overrightarrow{a}$=(4sinα,3),$\overrightarrow{b}$=(2,3cosα),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则α=$\frac{π}{4}$的逆命题、否命题、逆否命题中真命题的个数为2;
③集合A={x|x2-x=0},B={y|y=-lg(sinx)},C={y|y=$\sqrt{1-{t}^{2}}$}则x∈A是x∈B∩C的充分不必要条件. 
其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在各项为正数的等比数列{an}中,a1=2,且2a1,a3,3a2成等差数列.
(1)求数列{an}的通项公式;
(2)设Sn为{an}的前n项和,${b_n}=\frac{{{a_{n+1}}}}{{{S_n}{S_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知长方体的长、宽、高分别为3,4,5,则体对角线长度为$5\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图是一个奖杯三视图,试根据奖杯三视图计算它的表面积与体积.(尺寸单位:cm,取$π≈3,\sqrt{34}≈6$,结果精确到整数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)={x^2}-\frac{2}{3}a{x^3}({a>0,x∈R})$
(1)求f(x)的单调区间和极值.
(2)若g(x)=f(x)-1有三个零点,求实数a的取值范围.
(3)若对?x1∈(2,+∞),?x2∈(1,+∞),使得f(x1)•f(x2)=1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.空间中任意放置的棱长为2的正四面体ABCD.下列命题正确的是个数是(  ) 个
①正四面体ABCD的主视图面积可能是$\sqrt{2}$;
②正四面体ABCD的主视图面积可能是$\frac{2\sqrt{6}}{3}$;
③正四面体ABCD的主视图面积可能是$\sqrt{3}$;
④正四面体ABCD的主视图面积可能是2
⑤正四面体ABCD的主视图面积可能是4.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中:
①若命题p为真命题,命题q为假命题,则命题“p∧q“为真命题;
②“$sinα=\frac{1}{2}$”是“$α=\frac{π}{6}$”的必要不充分条件;
③命题“?x∈R,2x>0”的否定是“?x0∈R,${2^{x_0}}≤0$”
正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案