精英家教网 > 高中数学 > 题目详情

【题目】A.如图所示, 是园内两条弦的交点,过延长线上一点作圆的切线, 为切点,已知求证:

B.已知矩阵 , .求矩阵,使得

C.在平面直角坐标系中,直线的参数方程为 (为参数),以坐标原点为极点, 轴正半轴为极轴的极坐标系中,曲线的极坐标方程为,已知直线与曲线相交于两点,求线段的长.

D.已知都是正数,且,求证:

【答案】A:详见解析;B:

C: ;D:详见解析.

【解析】试题分析:A.由切割线定理及三角形相似可以 ,所以

B. 由矩阵变化公式可得. C.根据参数方程及极坐标方程与普通方程转化公式处理.D.由均值不等式可以得证.

试题解析:A.由切割线定理得

,即

因为 ,所以

因为

所以 ,所以

B.因为 ,

所以 ,

,得

所以

C.因为曲线的极坐标方程,所以,即曲线 的直角坐标方程为

将直线的参数方程为,代入抛物线方程

,即

解得

所以

D.证明:因为都是正数,

所以,

,所以

当且仅当时等号成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知不等式对一切都成立,则的最小值是( )

A. B. C. D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验。甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在区间内(满分100分),并绘制频率分布直方图如右图,两个班人数均为60人,成绩80分及以上为优良。

根据以上信息填好下列联表,并判断出有多大的把握认为学生成绩优良与班级有关?

(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率。

(以下临界值及公式仅供参考

, )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点为,其离心率为,又抛物线在点处的切线恰好过椭圆的一个焦点.

(1)求椭圆的方程;

(2)过点斜率为的直线交椭圆两点,直线的斜率分别为,是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,点 分别是棱 上的点,且

(Ⅰ)证明:平面平面

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体,关于其结构特征,下列说法不正确的是(  )

A.该几何体是由两个同底的四棱锥组成的几何体
B.该几何体有12条棱、6个顶点
C.该几何体有8个面,并且各面均为三角形
D.该几何体有9个面,其中一个面是四边形,其余均为三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数 的图象,只需把函数y=sin3x的图象(
A.向左平移
B.向左平移
C.向右平移
D.向右平移

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= (x≠0,a>0)是奇函数,且当x>0时,f(x)有最小值2
(1)求f(x)的表达式;
(2)设数列{an}满足a1=2,2an+1=f(an)﹣an(n∈N*).令bn= ,求证bn+1=bn2
(3)求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若0<α< ,﹣ <β<0,cos( +α)= ,cos( )= ,则cos(α+ )=(
A.
B.﹣
C.
D.﹣

查看答案和解析>>

同步练习册答案