精英家教网 > 高中数学 > 题目详情

【题目】已知B岛在A岛正东方向距离12km处,C岛在A岛北偏东方向相离8km处.某船从A岛出发向B岛驶去,并在与B,C距离相等处待命.

(1)求此船航行的距离(精确到0.1km).

(2)若此船在待命处接到命令,以最少的时间行驶到C岛,则此船应沿什么方向行驶?

【答案】(1) 7.9km (2) 北偏西方向

【解析】

根据题意作出示意图,设此船向岛方向行驶到处时,.设,则有

1)在中,利用余弦定理,即可解得此船航行的距离,

2)结合(1)的结论,在中,利用余弦定理,求得,从而得到船行驶的方向.

作出示意图,如图所示.

设此船向岛方向行驶到处时,.设

则有

(1)在中,

由余弦定理,得,解得

,即此船从岛到待命处应该航行的距离约为

(2)由余弦定理,得

,即船应沿北偏西方向全速行驶就可尽快到达岛.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到频数分布表和频率分布直方图如下.

组号

分组

频数

1

[0,2)

6

2

[2,4)

8

3

[4,6)

17

4

[6,8)

22

5

[8,10)

25

6

[10,12)

12

7

[12,14)

6

8

[14,16)

2

9

[16,18)

2

合计

100

(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的频率;

(2)求频率分布直方图中的ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从一张半径为3的圆形铁皮中裁剪出一块扇形铁皮(如图1阴影部分),并卷成一个深度为米的圆锥筒(如图2.若所裁剪的扇形铁皮的圆心角为.

1)求圆锥筒的容积;

2)在(1)中的圆锥内有一个底面圆半径为的内接圆柱(如图3),求内接圆柱侧面积最大时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列中,依次是某等差数列的第5项、第3项、第2项,且,公比

(1)求

(2)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

1)求直方图中的值;

2)求月平均用电量的众数和中位数;

3)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式.

(1)是否存在实数m,使不等式对任意恒成立?并说明理由.

(2)若不等式对任意恒成立,求实数m的取值范围.

(3)若对于,不等式恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且椭圆上一点P的坐标为.

1)求椭圆M的方程;

2)设椭圆的右顶点为C,不经过点C的直线l与椭圆M交于AB两点,且以线段AB为直径的圆过点C

①证明:直线l过定点,并求出该定点坐标;

②求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为D,若存在闭区间,使得函数满足以下两个条件:(1[mn]上是单调函数;(2[mn]上的值域为[2m2n],则称区间[mn]的“倍值区间”.下列函数中存在“倍值区间”的有( )个.

A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案