精英家教网 > 高中数学 > 题目详情
7.如图,在棱长为1的正方体中,P是侧棱CC1上的一点,CP=m
(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为$4\sqrt{2}$;
(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并证明你的结论.

分析 (1)连AC,设AC与BD相交于点O,AP与平面BDD1B1相交于点,连接OG,证明AO⊥平面BDD1B1,说明∠AGO是AP与平面BDD1B1所成的角.在Rt△AOG中,利用直线AP与平面BDD1B1所成的角的正切值为4$\sqrt{2}$.求出m的值.
(2)点Q应当是AICI的中点,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,通过证明 D1O1⊥平面ACC1A1,D1O1⊥AP.利用三垂线定理推出结论.

解答 解:(1)连AC,设AC与BD相交于点O,AP与平面BDD1B1相交于点G,
连接OG,因为PC∥平面BDD1B1,平面BDD1B1∩平面APC=OG,
故OG∥PC,所以,OG=$\frac{1}{2}$PC=$\frac{m}{2}$.
又AO⊥BD,AO⊥BB1,所以AO⊥平面BDD1B1
故∠AGO是AP与平面BDD1B1所成的角.
在Rt△AOG中,tan∠AGO=$\frac{\frac{\sqrt{2}}{2}}{\frac{m}{2}}=4\sqrt{2}$,即m=$\frac{1}{4}$.
所以,当m=$\frac{1}{4}$时,直线AP与平面BDD1B1所成的角的正切值为4$\sqrt{2}$.
(2)可以推测,点Q应当是AICI的中点,当是中点时
因为D1O1⊥A1C1,且 D1O1⊥A1A,A1C1∩A1A=A1
所以 D1O1⊥平面ACC1A1
又AP?平面ACC1A1,故 D1O1⊥AP.
那么根据三垂线定理知,D1O1在平面APD1的射影与AP垂直.

点评 本题考查直线与平面所成的角,考查直线与平面垂直的判定,三垂线定理的应用,考查空间想象能力,逻辑推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下列说法中正确的个数是(  )
(1)从一批产品取出三件产品,设事件A=“三件产品全是次品”,事件B=“三件产品全是正品”,事件C=“三件产品不全是次品”,A,B,C中任何两个均互斥;
(2)已知a,b都是实数,那么“$\sqrt{a}$>$\sqrt{b}$”是“lna>lnb”的充要条件;
(3)若命题p:?x∈(0,$\frac{π}{2}$),x-sinx<0,则¬p:?x∈(0,$\frac{π}{2}$),x-sinx≥0.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若$sinθ+cosθ=\frac{17}{13},θ∈(0,\frac{π}{4})$,则tanθ=$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在正方体ABCD-A1B1C1D1中,E是棱D1C1的中点,则异面直线D1B、EC的夹角的余弦值为(  )
A.$\frac{{\sqrt{10}}}{10}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{\sqrt{15}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,△ABC是边长为6的等边三角形,G是它的重心(三条中线的交点),过G的直线分别交线段AB、AC于E、F两点,∠AEG=θ.
(1)当$θ=\frac{π}{4}$时,求线段EG的长;
(2)当θ在区间$[\frac{π}{6},\frac{π}{2}]$上变化时,求$\frac{1}{EG}+\frac{1}{FG}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在函数①y=2x;  ②y=2-2x;③f(x)=x+x-1;  ④f(x)=x-x-3中,存在零点且为奇函数的序号是④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.m,n是空间两条不同直线,α,β是两个不同平面,下面有四个命题:
①m⊥α,n∥β,α∥β⇒m⊥n
②m⊥n,α∥β,m⊥α⇒n∥β
③m⊥n,α∥β,m∥α⇒n⊥β
④m⊥α,m∥n,α∥β⇒n⊥β
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:“曲线C1=$\frac{{x}^{2}}{{m}^{2}}+\frac{{y}^{2}}{2m+8}$=1表示焦点在x轴上的椭圆”,命题q:“曲线C2:$\frac{{x}^{2}}{m-t}+\frac{{y}^{2}}{m-t-1}=1$表示双曲线”.
(1)若命题p是真命题,求m的取值范围;
(2)若p是q的必要不充分条件,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.一次考试中,5名学生的数学、物理成绩如下:
学生A1A2A3A4A5
数学x(分)8991939597
物理y(分)8789899293
求y关于x的线性回归方程.
附:回归直线的斜率和截距的最小二乘估计公式分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

同步练习册答案