7£®Ä³Í³¼Æ¾ÖΪÁ˵÷²é¾ÓÃñÖ§³ö×´¿ö£¬Ëæ»úµ÷²é¸ÃÊÐ10»§¼ÒÍ¥µÄÈýÀàÖ§³ö£ºÊ³Æ·Ïû·ÑÀàÖ§³ö£¬ÒÂ×ÅÏû·ÑÀàÖ§³ö¡¢¾ÓסÏû·ÑÀàÖ§³ö£¬Ã¿ÀàÖ§³ö¶¼·ÖΪA¡¢B¡¢CÈý¸öµÈ¼¶£¬ÏÖÔÚ¶ÔÈýÖֵȼ¶½øÐÐÁ¿»¯£ºA¼¶¼ÇΪ2·Ö£»B¼¶¼ÇΪ1·Ö£»C¼¶¼ÇΪ0·Ö£¬Óã¨x£¬y£¬z£©±íʾ¸Ã¼ÒÍ¥µÄʳƷÏû·ÑÀàÖ§³ö¡¢ÒÂ×ÅÏû·ÑÀàÖ§³ö¡¢¾ÓסÏû·ÑÀàÖ§³öµÄµÃ·ÖÇé¿ö£¬ÔÙÓÃ×ÛºÏÖ¸±ê¦Ø=x+y+zµÄÖµÆÀ¶¨¸Ã¼ÒÍ¥µÄµÃ·ÖµÈ¼¶£ºÈô¦Ø¡Ý4£¬ÔòµÃ·ÖµÈ¼¶ÎªÒ»¼¶£»Èô2¡Ü¦Ø¡Ü3£¬ÔòµÃ·ÖµÈ¼¶Îª¶þ¼¶£»Èô0¡Ü¦Ø¡Ü1£¬ÔòµÃ·ÖµÈ¼¶ÎªÈý¼¶£¬µÃµ½ÈçϽá¹û£º
¼ÒÍ¥±àºÅA1A2A3A4A5A6A7A8A9A10
£¨x£¬y£¬z£©£¨1£¬1£¬2£©£¨2£¬1£¬1£©£¨2£¬2£¬2£©£¨0£¬0£¬1£©£¨1£¬2£¬1£©£¨1£¬2£¬2£©£¨1£¬1£¬1£©£¨1£¬2£¬2£©£¨1£¬2£¬1£©£¨1£¬1£¬1£©
£¨1£©ÔÚÕâ10»§¼ÒÍ¥ÖÐÈÎÈ¡Á½»§£¬ÇóÕâÁ½»§¼ÒÍ¥¾ÓסÏû·ÑÀàÖ§³öµÃ·ÖÏàͬµÄ¸ÅÂÊ£»
£¨2£©´ÓµÃ·ÖµÈ¼¶ÊÇÒ»¼¶µÄ¼ÒÍ¥ÖÐÈÎÈ¡Ò»»§£¬Æä×ÛºÏÖ¸±êΪa£¬´ÓµÃ·ÖµÈ¼¶²»ÊÇÒ»¼¶µÄ¼ÒÍ¥ÖÐÈÎÈ¡Ò»»§£¬Æä×ÛºÏÖ¸±êΪb£¬¼ÇËæ»ú±äÁ¿X=a-b£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®

·ÖÎö £¨1£©ÉèʼþAΪ¡°´Ó10»§¼ÒÍ¥ÖÐËæ»ú³éÈ¡Á½»§£¬ËûÃǵľÓסÏû·ÑÖ§³öµÃ·ÖÏàͬ¡±£®¾ÓסÏû·ÑÖ§³öµÃ·Ö1·ÖµÄÓÐ6»§£¬¾ÓסÏû·ÑÖ§³öµÃ·ÖΪ2µÄÓÐ4»§£¬ÓÉ´ËÄÜÇó³ö¾ÓסÏû·ÑÖ§³öµÃ·ÖÏàͬµÄËùÓеĸÅÂÊ£®
£¨2£©Ëæ»ú±äÁ¿XµÄËùÓпÉÄÜȡֵΪ£º1£¬2£¬3£¬4£¬5£®·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁкÍEX£®

½â´ð ½â£º£¨1£©ÉèʼþAΪ¡°´Ó10»§¼ÒÍ¥ÖÐËæ»ú³éÈ¡Á½»§£¬ËûÃǵľÓסÏû·ÑÖ§³öµÃ·ÖÏàͬ¡±£®
¾ÓסÏû·ÑÖ§³öµÃ·Ö1·ÖµÄÓÐA2£¬A4£¬A5£¬A7£¬A9£¬A10£¬
¾ÓסÏû·ÑÖ§³öµÃ·ÖΪ2µÄÓÐA1£¬A3£¬A6£¬A8£¬
´Ó10»§¼ÒÍ¥ÖÐËæ»ú³éÈ¡Á½»§µÄËùÓнá¹ûΪ${C}_{10}^{2}$=45£¬
¾ÓסÏû·ÑÖ§³öµÃ·ÖÏàͬµÄËùÓнá¹ûÊýΪ${C}_{6}^{2}+{C}_{4}^{2}$=21£¬
ËùÒÔ¾ÓסÏû·ÑÖ§³öµÃ·ÖÏàͬµÄËùÓеĸÅÂÊΪP£¨A£©=$\frac{21}{45}=\frac{7}{15}$£®¡­5·Ö
£¨2£©¼ÆËã10»§¼ÒÍ¥µÄ×ÛºÏÖ¸±ê£¬¿ÉµÃÏÂ±í£º

ÈËÔ±±àºÅA1A2A3A4A5A6A7A8A9A10
×ÛºÏÖ¸±ê4461453543
ÆäÖÐ×ÛºÏÖ¸±êÊÇÒ»¼¶µÄ£¨¦Ø¡Ý4£©ÓÐA1£¬A2£¬A3£¬A5£¬A6£¬A8£¬A9£¬¹²7»§£¬
×ÛºÏÖ¸±ê²»ÊÇÒ»¼¶µÄ£¨¦Ø¡¶4£©ÓÐA4£¬A7£¬A10¹²3»§£®¡­7·Ö
Ëæ»ú±äÁ¿XµÄËùÓпÉÄÜȡֵΪ£º1£¬2£¬3£¬4£¬5£®
P£¨X=1£©=$\frac{{C}_{4}^{1}{C}_{2}^{1}}{{C}_{7}^{1}{C}_{3}^{1}}$=$\frac{8}{21}$£¬
P£¨X=2£©=$\frac{{C}_{2}^{1}{C}_{2}^{1}}{{C}_{7}^{1}{C}_{3}^{1}}$=$\frac{4}{21}$£¬
P£¨X=3£©=$\frac{{C}_{4}^{1}{C}_{1}^{1}+{C}_{1}^{1}{C}_{2}^{1}}{{C}_{7}^{1}{C}_{3}^{1}}$=$\frac{6}{21}$£¬
P£¨X=4£©=$\frac{{C}_{1}^{1}{C}_{2}^{1}}{{C}_{7}^{1}{C}_{3}^{1}}$=$\frac{2}{21}$£¬
P£¨X=5£©=$\frac{{C}_{1}^{1}{C}_{1}^{1}}{{C}_{7}^{1}{C}_{3}^{1}}$=$\frac{1}{21}$£¬¡­9·Ö
ËùÒÔXµÄ·Ö²¼ÁÐΪ£º
X12345
P$\frac{8}{21}$$\frac{4}{21}$$\frac{6}{21}$$\frac{2}{21}$$\frac{1}{21}$
ËùÒÔEX=$1¡Á\frac{8}{21}+2¡Á\frac{4}{21}+3¡Á\frac{6}{21}+4¡Á\frac{2}{21}+5¡Á\frac{1}{21}$=$\frac{47}{21}$£®  ¡­12·Ö£®

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÅÅÁÐ×éºÏ֪ʶµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®º¯Êýf£¨x£©=cos2x-sin2x+2sinxcosx£¨x¡ÊR£©µÄ×îСÕýÖÜÆÚΪ¦Ð£¬µ¥µ÷µÝ¼õÇø¼äΪ$[k¦Ð+\frac{¦Ð}{8}£¬k¦Ð+\frac{5¦Ð}{8}]£¨k¡ÊZ£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª¼¯ºÏA={x|-1¡Üx¡Ü2}£¬B={x|x-4¡Ü0}£¬ÔòA¡ÈB=£¨¡¡¡¡£©
A£®{x|-1¡Üx£¼4}B£®{x|2¡Üx£¼4}C£®{x|x¡Ý-1}D£®{x|x¡Ü4}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Ä³µ¥Î»ÎªÁËÁ˽â°ì¹«Â¥µÄÓõçÁ¿y£¨¶È£©ÓëÆøÎÂx£¨¡æ£©Ö®¼äµÄ¹Øϵ£¬Ëæ»úͳ¼ÆÁËËĸö¹¤×÷ÈÕµÄÓõçÁ¿Óëµ±Ììƽ¾ùÆøÎÂÈç±í£º
ÆøΣ¨¡æ£©181310-1
ÓõçÁ¿£¨¶È£©24343864
£¨1£©ÓɱíÖÐÊý¾ÝÇóyÓëxµÄÏßÐԻع鷽³Ì£¨ÏµÊý$\stackrel{¡Ä}{b}$È¡ÕûÊý£©£»
£¨2£©Çó¹±Ï×ÂÊR2µÄÖµ£¨±£ÁôСÊýµãºóÁ½Î»£©£¬²¢×ö³ö½âÊÍ£®
¸½¼ÆË㹫ʽ£º$\widehat{b}$$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$£¬$\overline{y}$=$\widehat{b}$$\overline{x}$+$\widehat{a}$£¬R2=1-$\frac{\sum_{i=1}^{n}£¨{y}_{i}-{\widehat{y}}_{i}£©^{2}}{\sum_{i=1}^{n}£¨{y}_{i}-\widehat{y}£©^{2}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=|x+a|-|x-2|£®
£¨1£©µ±a=1ʱ£¬Çó²»µÈʽf£¨x£©¡Ý2µÄ½â¼¯£»
£¨2£©Èôf£¨x£©¡Ü|x-4|µÄ½â¼¯°üº¬[2£¬3]£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÓɱäÁ¿xÓëyÏà¶ÔÓ¦µÄÒ»×éÊý¾Ý£¨3£¬y1£©£¬£¨5£¬y2£©£¬£¨7£¬y3£©£¬£¨12£¬y4£©£¬£¨13£¬y5£©£¬µÃµ½µÄÏßÐԻع鷽³ÌΪ$\widehat{y}$=$\frac{1}{2}$x+20£¬Ôò$\overline{y}$=£¨¡¡¡¡£©
A£®26B£®23.5C£®23D£®24

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èôtan¦È+$\frac{1}{tan¦È}$=6£¬Ôòsin2¦È=£¨¡¡¡¡£©
A£®$\frac{1}{5}$B£®$\frac{1}{4}$C£®$\frac{1}{3}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®¼Çº¯ÊýµÄf£¨x£©=$\sqrt{{x}^{2}-1}$¶¨ÒåÓòΪA£¬²»µÈʽ£¨x-a-1£©£¨2a-x£©£¾0µÄ½â¼¯ÎªB£®
£¨1£©ÇóA£»
£¨2£©ÈôA¡ÉB=B£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÔÔ­µãΪ¼«µã£¬xÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC1µÄ·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{2}cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪC2£º¦Ñcos¦È+¦Ñsin¦È=1£¬ÈôÇúÏßC1ÓëC2ÏཻÓÚA¡¢BÁ½µã£®
£¨1£©Çó|AB|µÄÖµ£»
£¨2£©ÇóµãM£¨-1£¬2£©µ½A¡¢BÁ½µãµÄ¾àÀëÖ®»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸