精英家教网 > 高中数学 > 题目详情

如图,长方体中,,点的中点.

(1)求三棱锥的体积;
(2)证明:;
(3)求二面角的正切值.

(1);(2)证明过程详见解析;(3).

解析试题分析:本题主要考查空间两条直线的位置关系、二面角、锥体体积等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算能力、推理论证能力.第一问,求锥体体积,关键是找到锥体的高和底面面积;第二问,先利用直线与平面的判定定理证出,所以面内的线段;第三问,先利用直线与平面的判定定理证出,所以面内的线段,所以就找到了二面角的平面角,在直角三角形中求正切.
试题解析:(1)由长方体性质可得,,所以是三棱锥的高,
又点的中点,, 所以,, 
                    2分
三棱锥的体积  4分
(2)

连结, 因为是正方形,所以

所以         6分
 所以,
, 所以,       8分
(3) 因为,,所以, 
由(1)可知,, 
所以,,                   10分
, 
,  
是二面角的平面角 
直角三角形中, 
二面角的正切值为      13分
解法(二)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于

(1)求证:⊥EF;
(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,四边形是菱形,,E为PB的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面.   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,点M是A1B的中点,点N是B1C的中点,连接MN

(Ⅰ)证明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,侧面是等边三角形,在底面等腰梯形中,的中点,的中点,.

(1)求证:平面平面
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,的中点.

(1)求证:
(2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,已知AB=2,AD=EF=1.

(Ⅰ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅱ)设平面CBF将几何体EF-ABCD分割成的两个锥体的体积分别为VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,,异面直线所成
的角为.

(Ⅰ)求证:
(Ⅱ)设的中点,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在几何体中,平面是等腰直角三角形,,且,点的中点.

(Ⅰ)求证:平面
(Ⅱ)求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案