【题目】设函数,若曲线在点 处的切线方程为.
(Ⅰ)求的解析式;
(Ⅱ)求证:在曲线上任意一点处的切线与直线和所围成的三角形面积为定值,并求出此定值.
科目:高中数学 来源: 题型:
【题目】已知,且,函数,其中为自然对数的底数:
(1)如果函数为偶函数,求实数的值,并求此时函数的最小值;
(2)对满足,且的任意实数,证明函数的图像经过唯一的定点;
(3)如果关于的方程有且只有一个解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,在椭圆上.
(1)求椭圆的标准方程;
(2)已知动直线(斜率存在)与椭圆相交于点两点,且的面积,若为线段的中点.点在轴上投影为,问:在轴上是否存在两个定点,使得为定值,若存在求出的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以原点为圆心,半径为的圆 与直线相切.
(1)直线过点且截圆所得弦长为求直线 的方程;
(2)设圆与轴的正半轴的交点为,过点作两条斜率分别为 的直线交圆于两点,且 ,证明:直线恒过一个定点,并求出该定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线的顶点在坐标原点,焦点在x轴上,且过点(2,4),圆,过圆心的直线l与抛物线和圆分别交于P,Q,M,N,则的最小值为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为直角梯形, , ,平面底面, 为的中点, 是棱上的点, , , .
(Ⅰ)求证:平面平面;
(Ⅱ)若异面直线与所成角的余弦值为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中华民族是一个传统文化丰富多彩的民族,各民族有许多优良的传统习俗,如过大年吃饺子,元宵节吃汤圆,端午节吃粽子,中秋节吃月饼等等,让人们感受到浓浓的节目味道,某家庭过大年时包有大小和外观完全相同的肉馅饺子、蛋馅饺子和素馅饺子,一家4口人围坐在桌旁吃年夜饭,当晚该家庭吃饺子时每盘中混放8个饺子,其中肉馅饺子4个,蛋馅饺子和素馅饺子各2个,若在桌上上一盘饺子大家共同吃,记每个人第1次夹起的饺子中肉馅饺子的个数为,若每个人各上一盘饺子,记4个人中第1次夹起的是肉馅饺子的人数为,假设每个人都吃饺子,且每人每次都是随机地从盘中夹起饺子.
(1)求随机变量的分布列;
(2)若的数学期望分别记为、,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com