精英家教网 > 高中数学 > 题目详情

已知函数

(1)在直角坐标系中,画出函数大致图像.

(2)关于的不等式的解集一切实数,求实数的取值范围;

 

【答案】

(1)略(2)

【解析】本小题主要考查函数单调性的应用、函数奇偶性的应用、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.

(1)根据(2),定义域即看横轴覆盖部分,值域即看纵轴覆盖部分,奇偶性,看是否关于原点对称或关于纵轴对称.单调增区间看上升趋势,单调减区间看下降趋势,画出图象即可.

(2) 依题意,变形为对一切实数恒成立     ……6分

,则,求解最值得到。

解:

(1)图象特征大致如下,过点(0,6)定义域的偶函数,

值域,在单调递减区间    ……4分

(2)解法一:依题意,变形为对一切实数恒成立     ……6分

,则                       ……7分

因为单调递减(可用函数单调性定义证明或导数证明或复合函数的单调性说明)(不说明单调性得1分,扣3分)               ………11分

                                            ………13分

解法二:对一切实数恒成立

的最小值大于等于0恒成立;

      

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知L为过点P(-
3
3
2
,-
3
2
)
且倾斜角为30°的直线,圆C为圆心是坐标原点且半径等于1的圆,Q表示顶点在原点而焦点是(
2
8
,0)
的抛物线,设A为L和C在第三象限的交点,B为C和Q在第四象限的交点.
(1)写出直线L、圆C和抛物线Q的方程,并作草图.
(2)写出线段PA、圆弧AB和抛物线上OB一段的函数表达式.
(3)设P′、B′依次为从P、B到x轴的垂足,求由圆弧AB和直线段BB′、B′P′、P′P、PA所包含的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某城市设立以城中心O为圆心、r公里为半径的圆形保护区,从保护区边缘起,在城中心O正东方向上有一条高速公路PB、西南方向上有一条一级公路QC,现要在保护区边缘PQ弧上选择一点A作为出口,建一条连接两条公路且与圆O相切的直道BC.已知通往一级公路的道路AC每公里造价为a万元,通往高速公路的道路AB每公里造价是m2a万元,其中a,r,m为常数,设∠POA=θ,总造价为y万元.
(1)把y表示成θ的函数y=f(θ),并求出定义域;
(2)当m=
6
+
2
2
时,如何确定A点的位置才能使得总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年莱西一中模拟)(12分)如图,一只蚂蚁绕一个竖直放置的圆环逆时针匀速爬行,已知圆环的半径为m,圆环的圆心距离地面的高度为,蚂蚁每分钟爬行一圈,若蚂蚁的起始位置在最低点P0处.

(1)试确定在时刻t时蚂蚁距离地面的高度;

(2)画出函数时的图象;

(3)在蚂蚁绕圆环爬行的一圈内,有多长时间蚂蚁距离地面超过m?

查看答案和解析>>

科目:高中数学 来源:2015届江苏省沭阳县高一下学期期中调研测试数学试卷(解析版) 题型:解答题

如图,某城市设立以城中心为圆心、公里为半径的圆形保护区,从保护区边缘起,在城中心正东方向上有一条高速公路、西南方向上有一条一级公路,现要在保护区边缘PQ弧上选择一点A作为出口,建一条连接两条公路且与圆相切的直道.已知通往一级公路的道路每公里造价为万元,通往高速公路的道路每公里造价是万元,其中为常数,设,总造价为万元.

(1)把表示成的函数,并求出定义域;

(2)当时,如何确定A点的位置才能使得总造价最低?

 

查看答案和解析>>

科目:高中数学 来源:1978年全国统一高考数学试卷(附加题)(解析版) 题型:解答题

已知L为过点P且倾斜角为30°的直线,圆C为圆心是坐标原点且半径等于1的圆,Q表示顶点在原点而焦点是的抛物线,设A为L和C在第三象限的交点,B为C和Q在第四象限的交点.
(1)写出直线L、圆C和抛物线Q的方程,并作草图.
(2)写出线段PA、圆弧AB和抛物线上OB一段的函数表达式.
(3)设P′、B′依次为从P、B到x轴的垂足,求由圆弧AB和直线段BB′、B′P′、P′P、PA所包含的面积.

查看答案和解析>>

同步练习册答案