精英家教网 > 高中数学 > 题目详情
11.直线l过点P(2,1),与x轴,y轴的正半轴分布交于A,B两点,O为坐标原点.
(1)当直线l的斜率k=-1时,求△AOB的外接圆的面积;
(2)当△AOB的面积最小时,求直线l的方程.

分析 (1)当直线l的斜率k=-1时,直线l的方程为y-1=-(x-2),求出A,B的坐标,即可求△AOB的外接圆的面积;
(2)设直线l:y-1=k(x-2),求出A,B的坐标,表示面积,利用基本不等式,即可求出当△AOB的面积最小时,直线l的方程.

解答 解:当直线l的斜率k=-1时,直线l的方程为y-1=-(x-2),即x+y-3=0,可得A(3,0),B(0,3),|AB|=3$\sqrt{2}$,
且△AOB是直角三角形,AB为斜边,故△AOB的外接圆半径$r=\frac{{3\sqrt{2}}}{2}$…(4分)
所以外接圆的面积$s=π{({\frac{{3\sqrt{2}}}{2}})^2}=\frac{9π}{2}$…(5分)
(2)由题知直线l的斜率k存在,且k<0,设直线l:y-1=k(x-2),
令x=0,y=1-2k;令$y=0,x=2-\frac{1}{k}$,…(7分)
${S_{△AOB}}=\frac{1}{2}|{2-\frac{1}{k}}||{1-2k}|=\frac{1}{2}({\frac{1-2k}{-k}})({1-2k})=-\frac{1}{2}({\frac{1}{k}+4k-4})({k<0})$,
由勾函数知,当$k=-\frac{1}{2}$时,S△AOB最小…(9分)
故直线l的方程为$y-1=-\frac{1}{2}({x-2})$,即x+2y-4=0…(10分)

点评 本题考查圆的面积,考查直线方程,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}(x+1)|,x∈(-1,3)}\\{\frac{4}{x-1},x∈[3,+∞)}\end{array}\right.$则函数g(x)=f[f(x)]-1的零点个数为(  )
A.1B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.X=1!+2!+3!+…+100!,则X的个位数字为(  )
A.1B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用边长为48cm的正方形铁皮做一个无盖的铁盒,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成一个铁盒.则所做的铁盒容积最大时,在四角截去的小正方形的边长为(  )
A.6 cmB.8 cmC.10 cmD.12 cm

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知P(-4,3)是角α的终边上的一点,求sinα,cosα,tanα

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为确定加工某零件的时间,某工人做了四次实验,得到的数据的散点图如图所示.
(1)求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$,并在坐标系中画出回归直线;
(2)试预测加工8个零件需要多少时间(精确到十分位).
参考公式:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb•\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知当-1≤a≤1时,x2+(a-4)x+4-2a>0恒成立,则实数x的取值范围是(-∞,1)∪(3,+∞),.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知实数x、y满足$\left\{\begin{array}{l}x≥1\\ y≤a\\ x-y≤0\end{array}\right.({a>1})$,若z=2x+y的最大值为9,则实数a的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,x<1}\\{{x}^{2}+ax,x≥1}\end{array}\right.$,若f[f(0)]=4a,则实数a等于2.

查看答案和解析>>

同步练习册答案