精英家教网 > 高中数学 > 题目详情

【题目】已知向量 ,设函数 .
(1)求函数 的单调递增区间;
(2)在 中,边 分别是角 的对边,角 为锐角,若
的面积为 ,求边 的长.

【答案】
(1)解:

,得

的单调递增区间为


(2)解:

又A为锐角,∴

S△ABC= , ∴


【解析】(1)由题意利用向量的数量积坐标运算公式可求出 f ( x )的解析式,再根据两角和差的公式整理化简为同名的三角函数,结合正弦函数的单调性即可求出单调递增区间。(2)根据已知整理原式再利用二倍角公式可得出cos A的值进而得到角A的值,然后利用三角形面积公式求出bc再由余弦定理求出a的值。
【考点精析】认真审题,首先需要了解两角和与差的余弦公式(两角和与差的余弦公式:),还要掌握二倍角的余弦公式(二倍角的余弦公式:)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知m、n、s、t∈R* , m+n=3, 其中m、n是常数且m<n,若s+t的最小值 是 ,满足条件的点(m,n)是椭圆 一弦的中点,则此弦所在的直线方程为(
A.x﹣2y+3=0
B.4x﹣2y﹣3=0
C.x+y﹣3=0
D.2x+y﹣4=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】画正六棱柱的直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】咖啡馆配制两种饮料,甲种饮料每杯分别用奶粉、咖啡、糖9g、4g、3g;乙种饮料每杯分别用奶粉、咖啡、糖4g、5g、10g,已知每天使用原料限额为奶粉3600g,咖啡2000g,糖3000g,如果甲种饮料每杯能获利0.7元,乙种饮料每杯能获利1.2元,每天在原料使用的限额内,饮料能全部售完,问咖啡馆每天怎样安排配制饮料获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人. (Ⅰ)求该专业毕业总人数N和90~95分数段内的人数n;
(Ⅱ)现欲将90~95分数段内的n名人分配到几所学校,从中安排2人到甲学校去,若n人中仅有两名男生,求安排结果至少有一名男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 ,在下列四个命题红,正确命题的个数( )
①若 ②若 ,则
③若 ,则 ④若 ,则
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列 的前 项和为 ,且 ,数列 为等差数列,且 .
(1)求
(2)求数列 的前 项和 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为R,导函数f'(x)的图象如图所示,则函数f(x)(
A.无极大值点,有四个极小值点
B.有三个极大值点,两个极小值点
C.有两个极大值点,两个极小值点
D.有四个极大值点,无极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用反证法证明:已知a,b均为有理数,且 都是无理数,求证: 是无理数.

查看答案和解析>>

同步练习册答案