精英家教网 > 高中数学 > 题目详情
13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b=$\sqrt{6}$,A=$\frac{π}{4}$,若三角形有两解,则边a的取值范围为(  )
A.$(0,\sqrt{6})$B.$(1,\sqrt{6})$C.$(\sqrt{3},\sqrt{6})$D.$(\sqrt{3},+∞)$

分析 利用正弦定理列出关系式,将a,b,sinA的值代入表示出sinB,根据B的度数确定出B的范围,要使三角形有两解确定出B的具体范围,利用正弦函数的值域求出x的范围即可.

解答 解:∵在△ABC中,b=$\sqrt{6}$,A=$\frac{π}{4}$,
∴由正弦定理得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{6}×\frac{\sqrt{2}}{2}}{a}$=$\frac{\sqrt{3}}{a}$,
∵A=$\frac{π}{4}$,
∴0<B<$\frac{3π}{4}$,
要使三角形有两解,得到$\frac{π}{4}$<B<$\frac{3π}{4}$,且B≠$\frac{π}{2}$,
即$\frac{\sqrt{2}}{2}$<sinB<1,
∴$\frac{\sqrt{2}}{2}$<$\frac{\sqrt{3}}{a}$<1,
解得:$\sqrt{3}$<a<$\sqrt{6}$,
故选:C.

点评 此题考查了正弦定理,以及正弦函数的性质,熟练掌握正弦定理是解本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=πcosx-1在(-π,c)上为增函数,则实数c的取值范围是(-π,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若f(x)=$\left\{\begin{array}{l}{\frac{sin6x+{e}^{-3ax}-1}{3x},x≠0}\\{a,x=0}\end{array}\right.$在点x=0连续,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)的定义域为:{x|x≠0},且2f(x)+f($\frac{1}{x}$)=x,试判断f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.AB是⊙O的直径,点C是⊙O上的动点,过动点C的直线VC垂直于⊙O所在的平面,D,E分别是VA,VC的中点.
(1)试判断直线DE与平面VBC的位置关系,并说明理由;
(2)若已知AB=VC=2,0<BC<1,求二面角C-VB-A的余弦值的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是定义在D上的函数,若存在区间[m,n]⊆D及正实数k,使函数f(x)在[m,n]上的值域恰为[km,kn],则称函数f(x)是k型函数.给出下列说法:
①f(x)=3-$\frac{4}{x}$不可能是k型函数;  
②若函数f(x)=$\frac{({a}^{2}+a)x-1}{{a}^{2}x}$(a≠0)是1型函数,则n-m的最大值为$\frac{2\sqrt{3}}{3}$;  
③若函数f(x)=-$\frac{1}{2}$x2+x是3型函数,则m=-4,n=0.
其中正确说法个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一条光线从点P(5,3)射出,与x轴相交于点Q(2,0),经x轴反射,则反射光线所在直线的方程为(  )
A.x+y-2=0B.x-y-2=0C.x-y+2=0D.x+y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=ax3-bx2,若曲线y=f(x)在点(1,f(1))处的切线方程为y=-x+1,则当$-\frac{1}{2}≤x≤\frac{3}{2}$时,f(x)的取值范围是(  )
A.$[0,\frac{4}{27}]$B.$[0,\frac{3}{8}]$C.[-$\frac{9}{8}$,$\frac{4}{27}$]D.$[-\frac{9}{8},\frac{3}{8}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点P,Q为圆C:x2+y2=25上的任意两点,且|PQ|<6,若PQ中点组成的区域为M,在圆C内任取一点,则该点落在区域M上的概率为$\frac{9}{25}$.

查看答案和解析>>

同步练习册答案