已知等比数列的前项和.设公差不为零的等差数列满足:,且成等比.
(Ⅰ) 求及;
(Ⅱ) 设数列的前项和为.求使的最小正整数的值.
(Ⅰ);(Ⅱ)9.
【解析】
试题分析:(Ⅰ)本小题可以通过可以求得数列的通项公式,然后再求得等差数列的首项和公差,然后求得;(Ⅱ)首先分析新数列的通项公式,得,可知其为等差数列,对其求和可得,然后将其代入到不等式中得到关于的不等式,考虑到,可得的最小值为9.
试题解析:(Ⅰ) 当n=1时,a1=S1=2-a.
当n≥2时,an=Sn-Sn-1=2n-1.
所以1=2-a,得a=1,
所以an=2n-1.
设数列{bn}的公差为d,由b1=3,(b4+5)2=(b2+5)(b8+5),得 (8+3d)2=(8+d)(8+7d),
故d=0 (舍去) 或 d=8.
所以a=1,bn=8n-5,n∈N*. 7分
(Ⅱ) 由an=2n-1,知an=2(n-1).
所以Tn=n(n-1).
由bn=8n-5,Tn>bn,得n2-9n+5>0,
因为n∈N*,所以n≥9.
所以,所求的n的最小值为9. 14分
考点:1.等比数列;2.等差数列.
科目:高中数学 来源:2011届陕西省师大附中、西工大附中高三第七次联考文数 题型:解答题
(本题13分)
已知等比数列的前项和是,满足.
(Ⅰ)求数列的通项及前项和;
(Ⅱ)若数列满足,求数列的前项和;
(Ⅲ)若对任意的,恒有成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年吉林省长春市毕业班第四次调研测试文科数学试卷(解析版) 题型:选择题
已知等比数列的前项和为,且满足,则公比=( )
A. B. C. 2 D.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省高三上学期期始考试理科数学试卷(解析版) 题型:解答题
已知等比数列的前项和为,正数数列的首项为,
且满足:.记数列前项和为.
(Ⅰ)求的值; (Ⅱ)求数列的通项公式;
(Ⅲ)是否存在正整数,且,使得成等比数列?若存在,求出的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2013届广东省度高二下学期期中文科数学试卷(解析版) 题型:选择题
已知等比数列{}的前项和为,且,则数列的公比的值为( )
A. 2 B. 3 C. 2或-3 D. 2或3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com