精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

【答案】(1),;(2).

【解析】试题分析:(1)先根据加减消元法得曲线的普通方程,再根据 将曲线的极坐标方程化为直角坐标方程;(2)将直线参数方程代入曲线的直角坐标方程,由,再利用韦达定理列方程解得实数的值.

试题解析:

解:(1)的参数方程,消参得普通方程为

的极坐标方程为两边同乘

(2)将曲线的参数方程标准化为为参数,)代入曲线,由,得

对应的参数为,由题意得

时,,解得

时,解得

综上:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求函数在点处的切线方程;

(2)当时,令函数,若函数在区间上有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了响应厦门市政府“低碳生活,绿色出行”的号召,思明区委文明办率先全市发起“少开一天车,呵护厦门蓝”绿色出行活动.“从今天开始,从我做起,力争每周至少一天不开车,上下班或公务活动带头选择步行、骑车或乘坐公交车,鼓励拼车……”铿锵有力的话语,传递了绿色出行、低碳生活的理念.

某机构随机调查了本市部分成年市民某月骑车次数,统计如下:

人数  次数

年龄

[0,10)

[10,20)

[20,30)

[30,40)

[40,50)

[50,60]

18岁至31岁

8

12

20

60

140

150

32岁至44岁

12

28

20

140

60

150

45岁至59岁

25

50

80

100

225

450

60岁及以上

25

10

10

18

5

2

联合国世界卫组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老年人.用样本估计总体的思想,解决如下问题:

(1)估计本市一个18岁以上青年人每月骑车的平均次数;

(2)若月骑车次数不少于30次者称为“骑行爱好者”,根据这些数据能否在犯错误的概率不超过0.001的前提下认为“骑行爱好者”与“青年人”有关?

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:

1

2

3

4

5

6

7

5

8

8

10

14

15

17

(Ⅰ)经过进一步统计分析,发现具有线性相关关系.请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(Ⅱ)该商店规定:若抽中“一等奖”,可领取元购物券;抽中“二等奖”可领取元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为,获得“二等”的概率为.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是减函数,求实数的取值范围;

(2)若函数上存在两个极值点证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某工厂的一个车间抽取某种产品50件,产品尺寸(单位:)落在各个小组的频数分布如下表:

数据分组

频数

3

8

9

12

10

5

3

(1)根据频数分布表,求该产品尺寸落在的概率;

(2)求这50件产品尺寸的样本平均数.(同一组中的数据用该组区间的中点值作代表);

(3)根据产品的频数分布,求出产品尺寸中位数的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,是平行四边形,分别是的中点.

)证明:平面平面

)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 ,其左右焦点为,过点的直线交椭圆 两点,线段的中点为 的中垂线与轴和轴分别交于两点,且构成等差数列.

(1)求椭圆的方程;

(2)记的面积为 为原点)的面积为,试问:是否存在直线,使得?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着社会的发展,终身学习成为必要,工人知识要更新,学习培训必不可少,现某工厂有工人1000名,其中250名工人参加短期培训(称为类工人),另外750名工人参加过长期培训(称为类工人),从该工厂的工人中共抽查了100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)得到类工人生产能力的茎叶图(左图),类工人生产能力的频率分布直方图(右图).

(1)问类、类工人各抽查了多少工人,并求出直方图中的

(2)求类工人生产能力的中位数,并估计类工人生产能力的平均数(同一组中的数据用该组区间的中点值作代表);

(3)若规定生产能力在内为能力优秀,由以上统计数据在答题卡上完成下面的列联表,并判断是否可以在犯错误概率不超过0.1%的前提下,认为生产能力与培训时间长短有关.能力与培训时间列联表

短期培训

长期培训

合计

能力优秀

能力不优秀

合计

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

同步练习册答案