精英家教网 > 高中数学 > 题目详情

【题目】设一组数据51,54,m,57,53的平均数是54,则这组数据的标准差等于

【答案】2
【解析】解:数据51,54,m,57,53的平均数是54,

×(51+54+m+57+53)=54,

解得m=55,

所以这组数据的方差为

s2= ×[(51﹣54)2+(54﹣54)2+(55﹣54)2+(57﹣54)2+(53﹣54)2]=4,

标准差为s=2.

所以答案是:2.

【考点精析】解答此题的关键在于理解平均数、中位数、众数的相关知识,掌握⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱 中,底面 是边长为2的等边三角形, 的中点.

(1)求证: 平面
(2)若四边形 是正方形,且 , 求直线 与平面 所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足: ,函数f(x)=ax3+btanx,若f(a4)=9,则f(a1)+f(a2017)的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标标系xoy中,已知曲线 (α为参数,α∈R),在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线 = ,曲线C3:ρ=2cosθ. (Ⅰ)求曲线C1与C2的交点M的直角坐标;
(Ⅱ)设A,B分别为曲线C2 , C3上的动点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,F1、F2是双曲线 =1(a>0)的左、右焦点,过F1的直线l与双曲线交于点A、B,若△ABF2为等边三角形,则△BF1F2的面积为(
A.8
B.8
C.8
D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】和谐高级中学共有学生570名,各班级人数如表:

一班

二班

三班

四班

高一

52

51

y

48

高二

48

x

49

47

高三

44

47

46

43

已知在全校学生中随机抽取1名,抽到高二年级学生的概率是
(1)求x,y的值;
(2)现用分层抽样的方法在全校抽取114名学生,应分别在各年级抽取多少名?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 与圆 关于直线 对称,且点 在圆 上.
(1)判断圆 与圆 的公切线的条数;
(2)设 为圆 上任意一点, 三点不共线, 的平分线,且交 ,求证: 的面积之比为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,动点M到点F(1,0)的距离与它到直线x=2的距离之比为 . (Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)设直线y=kx+m(m≠0)与曲线E交于A,B两点,与x轴、y轴分别交于C,D两点(且C,D在A,B之间或同时在A,B之外).问:是否存在定值k,对于满足条件的任意实数m,都有△OAC的面积与△OBD的面积相等,若存在,求k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P﹣ABCD中,四边形ABCD为矩形,△PAD为等腰三角形,∠APD=90°,平面PAD⊥平面ABCD,且AB=1,AD=2,E,F分别为PC,BD的中点.
(1)证明:EF∥平面PAD;
(2)证明:直线PA⊥平面PCD.

查看答案和解析>>

同步练习册答案