【题目】如图,正方形ADEF与梯形ABCD所在的平面互相垂直,,,,,为的中点.
(1)求证:BM∥平面ADEF;
(2)求证:平面BDE⊥平面BEC.
【答案】(1)见解析;(2)见解析
【解析】
(1)取DE中点N,连接MN,AN,由三角形中位线定理得,四边形ABMN为平行四边形,即BM∥AN,再由线面平行的判定定理即可得到BM∥平面ADEF;
(2)由已知中正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,我们易得到ED⊥BC,解三角形BCD,可得BC⊥BD,由线面垂直的判定定理,可得BC⊥平面BDE,再由面面垂直的判定定理,即可得到平面BDE⊥平面BEC.
(1)取DE中点N,连接MN,AN,在△EDC中,M,N分别为EC,ED的中点
∴MN∥CD,且MN=CD,由已知AB∥CD,AB=AD=2,CD=4,∴MN∥AB,且MN=AB
∴四边形ABMN为平行四边形,∴BM∥AN,又∵AN平面ADEF,BM平面ADEF,
∴BM∥平面ADEF.
(2)∵ADEF为正方形,∴ED⊥AD,又∵平面平面,且平面平面,且ED平面ADEF,
∴ED⊥平面ABCD,∴ED⊥BC,在直角梯形ABCD中,AB=AD=2,CD=4,可得BC=2,
在△BCD中,BD=BC=2,CD=4,∴BC⊥BD,∴BC⊥平面BDE,
又∵BC平面BEC,∴平面BDE⊥平面BEC
科目:高中数学 来源: 题型:
【题目】已知正方形的边长为4,E,F分别为,的中点,以为棱将正方形折成如图所示的的二面角,点M在线段上.
(1)若M为的中点,且直线与由A,D,E三点所确定平面的交点为G,试确定点G的位置,并证明直线面;
(2)是否存在M,使得直线与平面所成的角为;若存在,求此时的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆()的离心率为,连接椭圆四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设是椭圆的右顶点,过点作两条互相垂直的直线,分别与椭圆交于,两点,求证:直线过定点;
(3)(只理科做)过点作两条互相垂直的直线,,与圆:交于,两点,交椭圆于另一点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)当a≤0时,讨论函数f(x)的单调性;
(2)是否存在实数a,对任意的x1,x2(0,+∞),且x1≠x2,都有恒成立.若存在,求出a的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在).
(1)求居民收入在的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在的这段应抽取多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将个编号为、、、的不同小球全部放入个编号为、、、的个不同盒子中.求:
(1)每个盒至少一个球,有多少种不同的放法?
(2)恰好有一个空盒,有多少种不同的放法?
(3)每盒放一个球,并且恰好有一个球的编号与盒子的编号相同,有多少种不同的放法?
(4)把已知中个不同的小球换成四个完全相同的小球(无编号),其余条件不变,恰有一个空盒,有多少种不同的放法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,在点处的切线方程为.
(Ⅰ)求的值;
(Ⅱ)已知,当时,恒成立,求实数的取值范围;
(Ⅲ)对于在中的任意一个常数,是否存在正数,使得,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知单调等比数列,首项为,其前项和是,且,,成等差数列,数列满足条件
(1)求数列、的通项公式;
(2)设,记数列的前项和是.
①求;
②求正整数,使得对任意,均有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从全校参加数学竞赛的学生的试卷中,抽取一个样本,考察竞赛的成绩分布,将样本分成组,绘成频率分布直方图,图中从左到右各小组的长方形的高之比为,最右边一组的频数是.
(1)成绩落在哪个范围的人数最多?并求出该小组的频数、频率;
(2)估计这次竞赛中,成绩高于分的学生占总人数的百分百.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com