【题目】下列函数是偶函数的是( )
A.y=1﹣lg|x|
B.
C.
D.
【答案】A
【解析】解:对于函数f(x)=1﹣lg|x|,它的定义域为{x|x≠0},且f(﹣x)=1﹣lg|﹣x|=1﹣lg|x|=f(x),故它为偶函数.对于函数y=f(x)=lg ,令 >0,求得﹣1<x<1,
再根据f(﹣x)=lg =lg =﹣f(x),可得该函数为奇函数.
对于函数y=f(x)= ﹣ = ,它的定义域为{x|x≠±1},关于原点对称,
但不满足f(﹣x)=f(x),故它不是偶函数.
对于函数y=f(x)= + ,它的定义域为{x|x≠±1},关于原点对称,
但不满足f(﹣x)=f(x),故它不是偶函数.
故选:A.
【考点精析】通过灵活运用函数的奇偶性,掌握偶函数的图象关于y轴对称;奇函数的图象关于原点对称即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log (3x2﹣ax+5)在[﹣1,+∞)上单调递减,则实数a的取值范围是( )
A.[﹣8,﹣6]
B.(﹣8,﹣6]
C.(﹣∞,﹣8)∪(﹣6,+∞)
D.(﹣∞,﹣6]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过双曲线 =1(a>0,b>0)的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为坐标原点,若 = ( + ),则双曲线的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax+lnx(a∈R). (Ⅰ)若a=2,求曲线y=f(x)在x=1处切线的斜率;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(ax+1)+ ﹣x2﹣ax(a∈R)
(1)若y=f(x)在[4,+∞)上为增函数,求实数a的取值范围;
(2)当a≥ 时,设g(x)=ln[x2(ax+1)]+ ﹣3ax﹣f(x)(x>0)的两个极值点x1 , x2(x1<x2)恰为φ(x)=lnx﹣cx2﹣bx的零点,求y=(x1﹣x2)φ′( )的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx+ (a,b∈R)在点(1,f(1))处的切线方程为x﹣2y=0.
(1)求a,b的值;
(2)当x>1时,f(x)﹣kx<0恒成立,求实数k的取值范围;
(3)证明:当n∈N* , 且n≥2时, + + +…+ > .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校为了了解、两个班级学生在本学期前两个月内观看电视节目的时长,分别从这两个班级中随机抽取10名学生进行调查,得到他们观看电视节目的时长分别为(单位:小时):
班:5、5、7、8、9、11、14、20、22、31;
班:3、9、11、12、21、25、26、30、31、35.
将上述数据作为样本.
(Ⅰ)绘制茎叶图,并从所绘制的茎叶图中提取样本数据信息(至少写出2条);
(Ⅱ)分别求样本中、两个班级学生的平均观看时长,并估计哪个班级的学生平均观看的时间较长;
(Ⅲ)从班的样本数据中随机抽取一个不超过11的数据记为,从班的样本数据中随机抽取一个不超过11的数据记为,求的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,当n>4时,f(n)= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com